Tag: Inspections (page 1 of 2)

OSHA Inspections – Video Daily Double

OSHA has posted a video on the “OSHA Inspection Process” to give you a general idea of what to expect during an OSHA inspection.

Don’t forget to watch our longer video on how to PREPARE for and MANAGE that inspection including what you can do AFTER it do deal with the aftermath!

If you need help preparing for, managing, or dealing with the aftermath of an OSHA or EPA inspection, please contact us.

Compliance Auditing and the Karenina Principle

Over the years I’ve audited well over one hundred Ammonia Refrigeration Process Safety (PSM / RMP) programs and one of the things that I always try and remember during the audit is something called the “Anna Karenina” principle. The first line in that Leo Tolstoy novel is:

“All happy families are alike; each unhappy family is unhappy in its own way.”

 

Put another way: Success requires certain key factors are addressed. Meeting those requirements means that those successful systems will be similar to other successful systems. For Process Safety programs, there are many key factors to success, but I think they all boil down to three main categories:

  • Does the facility have a written Process Safety Program that (on paper) meets the safety & compliance requirements of the law, the process, and the people, in a manner that meets the business needs of the company? If so;
  • Is the written Process Safety Program implemented as written? If so;
  • In the actual day-to-day process, does the written Process Safety Program as implemented address the safety & compliance requirements of the law, the process, and the people, in a manner that meets the business needs of the company adequately?

I often call this the “Three Levels of Compliance.” Shown in a flowchart:

While there are nearly infinite ways a Process Safety program can fail, but ALL successful programs will pass these three levels of compliance checks. Understanding this concept will help you be a better auditor, but it can also help you be a better implementer!

 

In Auditing, how does this work in practice?

Let’s look at an example of an identified deficiency of rusted pipe found during the walkthrough portion of an audit. Note, we’ve kind of started at the 3rd level of compliance here because we’ve found a problem in the field and therefore know that the plan as implemented isn’t adequate!

First-pass question concerning written plan could include:

    • Are there written instructions on their inspection frequency and acceptable conditions?
    • Is there a written plan on training to perform these inspections?
    • Does the written Mechanical Integrity Plan address these specific pipes?

The answers to these questions will help you define a finding / recommendation to improve the program.

Second-pass questions concerning implementation could include:

    • Is the written Mechanical Integrity Plan that addresses these pipes being conducted when it is scheduled to be?
    • Are the written instructions being followed?
    • Was the inspector trained in accordance with the written plan?

Again, if the answers to these questions may prompt a finding / recommendation to improve the program. If you have a written MI plan and you are implementing it, but you still have rusting pipes; then you need to fix either the plan or your implementation of it!

 

How can this concept help me be a better implementer?

Your Process Safety Program is, by its very nature, artificially bringing order to chaos. Because of Entropy, we know that all systems and processes will eventually decline into disorder and fail. This decay happens with no effort on your part but, with effort, it can be thwarted.

Ultimately. I believe the only way to continuously, sustainably maintain your Process Safety Program is by forcing a feedback loop. A feedback loop is where you ensure that the output of a system is routed back to the input of the system. In our earlier worked example, we need to ensure that the output (physical condition, daily practices, etc.) of the system is routed back to the input (written plan and implementation of it) so we can know how well the system is performing and make changes as needed.

When it comes to the mechanical world, there is no better feedback loop that actual inspections and tests. If it is properly designed, your Mechanical Integrity program should be providing this information. Your team needs to understand that (no matter how small) every single deficiency you find, or breakdown that you have, is a sign that your plan can be improved.

When it comes to the operation of the system (policies, procedures, etc.) your PSM team is supposed to be providing this feedback. I say “supposed to be” because more and more I see that this important feedback loop is not being properly utilized. For more information on what the purpose of a PSM team is and what it should do see this earlier article: What is the purpose of a PSM Team?

Responding to an OSHA NEP Inspection Document Request

Back in 2017 I posted on how to answer an OSHA document request from the published NEP.

OSHA’s published CPL-03-00-021 – “PSM Covered Chemical Facilities National Emphasis Program” includes an example document request list that often correlates fairly well to the one that OSHA inspectors provide during an NEP inspection.

Recently, a friend sent me the Document Request they received at the onset of the inspection which was quite a bit different from that PSM ChemNEP. Here’s what I noticed reviewing this new document:

  • It’s quite a bit longer.
  • The information – again – isn’t NH3 Refrigeration Specific. That means you have to interpret some of it.
  • In my opinion, It’s designed to be a huge fishing expedition.

I took that request and modified it to show how I would answer the 110 questions if you were using my PSM programs. You can download the 13 page, 4,500 word Microsoft Word monstrosity through the following link: 0419 OSHA Document Request.

Just a few general warnings about questions and document requests:

  • When in doubt, ask for clarification. Always get clarifications in WRITING.
  • When you are unsure of the appropriate documentation to provide, or what documentation addresses the issue, ask to get back to them and seek quality advice.
  • Always get additional documentation requests and follow-up questions in WRITING.

Remember, you can watch a 30 minute presentation on YouTube regarding preparing for (and surviving) an OSHA / EPA inspection here.

Learning from Failure

“Failure is only opportunity to begin again. Only this time, more wisely.” –Henry Ford

We often push PSM practitioners to perform Incident Investigations for fairly minor events in the hopes that the lessons learned from those minor incidents will stop the larger incidents from happening. This is, in part, due to CCPS (Center for Chemical Process Safety) guidance that, for every single catastrophic accident, there are typically nearly 9,900 minor issues / process upsets and 99 near misses.

So, if you only investigate the catastrophic incidents, then you are only acting on 0.010% of the opportunities available to you to improve your control over the process.

OSHA has promoted this idea as far back as a decade ago…

OSHA and industry have found that when major incidents have occurred, most of these incidents have included precursor incidents. Additionally, OSHA and industry (See CCPS [Ref. 41], Section 5, “Reporting and Investigating Near Misses” have concluded based on past investigations, that if employers had properly responded to precursor incidents, later major incidents might not have occurred. Consequently, anytime an employer has an “opportunity” to investigate a near-miss/precursor incident (i.e., an incident that could reasonably have resulted in a catastrophic release) it is important that the required investigation is conducted and that the findings and recommendations are resolved, communicated, and integrated into other PSM elements/systems so a later major incident at the facility is prevented. …It is RAGAGEP to investigate incidents involving system upsets or abnormal operations which result in operating parameters which exceed operating limits or when layers of protection have been activated such as relief valves. (An example RAGAGEP for investigating incidents, including near-miss incidents is CCPS [Guidelines for Investigating Chemical Process Incidents, 2nd Ed.], this document presents some common examples of near-miss incidents). (OSHA, Refinery PSM NEP, 2007)

Going a step further, it’s often true that you can learn something about managing complex operations from businesses in entirely different fields. One field that I like to follow – in part because it’s endlessly re-inventing itself – is information technology.

Google recently published an article on their Post-Mortem culture, with a farcical worked-example that includes the movie “Back to the Future” and a newly discovered sonnet by Shakespeare. The practice of learning from their failures is actually part of their Sight Reliability Engineer handbook and you can read the entire chapter if it appeals to you.

“Failures are an inevitable part of innovation and can provide great data to make products, services, and organizations better. Google uses ‘postmortems’ to capture and share the lessons of failure…

… For us, it’s not about pointing fingers at any given person or team, but about using what we’ve learned to build resilience and prepare for future issues that may arise along the way. By discussing our failures in public and working together to investigate their root causes, everyone gets the opportunity to learn from each incident and to be involved with any next steps. Documentation of this process provides our team and future teams with a lasting resource that they can turn to whenever necessary.

And while our team has used postmortems primarily to understand engineering problems, organizations everywhere — tech and non-tech — can benefit from postmortems as a critical analysis tool after any event, crisis, or launch. We believe a postmortem’s influence extends beyond that of any document and singular team, and into the organization’s culture itself.”

Google’s Pre-Mortem Tool – Anticipating what can go wrong.

Google’s Post-Mortem Tool – Dealing with what actually went wrong.

What you need to know about Repeat Citations

First, what is a Repeat Citation? Here’s what OSHA has to say about it in their Field Operations Manual or FOM:

An employer may be cited for a repeated violation if that employer has been cited previously for the same or a substantially similar condition or hazard and the citation has become a final order of the Occupational Safety and Health Review Commission (OSHRC). A citation may become a final order by operation of law when an employer does not contest the citation, or pursuant to court decision or settlement. The underlying citation which the repeated violation will be based on must have become a final order before the occurrence or observation of the second substantially similar violation. (OSHA FOM Chapter 4, Section VII(A)(1). Pg. 4-21&4-22)

A Repeat violation is essentially exposing your employees to the same (or substantially similar) conditions or hazards after your company has previously been cited for the same (or substantially similar) conditions or hazards. Note that this is about your company and not your facility. If you are working for Billy Bob’s Cold Storage and they have four facilities, you may well be subject to a Repeat citation based on a citation issued at one of the other facilities. For Federal OSHA, the citation must have been made by Federal OSHA, not a state plan:

Federal Repeat Citations cannot be based on prior citations from State Plans (OSHA FOM Chapter 4, Section VII(A)(2). Pg. 4-22)

.

OSHA needs to establish three things to establish a Repeat violation:

  • That the underlying condition or hazard is the same or substantially similar to one used as the basis for a previous citation.
  • That the previous citation has been finalized – it can not be used to establish a Repeat violation if it is still being contested.
  • That you actually came into compliance after the original citation.

.

Condition Substantially Similar:

They are issued based on similar conditions or hazards, not based on identical OSHA standard (OSHA FOM Chapter 4, Section VII(B) & VII(B) Pg. 4-22)

They CAN be issued for General Duty Citations (OSHA FOM Chapter 4, Section III(E). Pg. 4-18)

The key to understanding this is that it is NOT based on the particular OSHA Standard or Rule, it is based on the conditions / hazards. This is particularly important under PSM because a single condition or hazard may be cited under several different portions of the PSM Standard or Rule. As an example, let’s say that you were previously cited under PSM 29CFR1910.119(l)(5) for lacking an SOP for a new piece of equipment that was installed. The condition or hazard is not providing an SOP for a piece of equipment that operators are expected to operate. However, it’s important to note that the same condition or hazard could have been cited under 29CFR1910.119(e)(1), 29CFR1910.119(e)(3)(i), 29CFR1910.119(f), 29CFR1910.119(f)(2), 29CFR1910.119(f)(3), 29CFR1910.119(g)(1)(i), 29CFR1910.119(l)(2)(iii), 29CFR1910.119(i)(2)(ii), etc. Remember, it’s about the condition or hazard, not the individual OSHA rule.

.

Previous Citation is Final:

… the citation has become a final order of the Occupational Safety and Health Review Commission (hereafter,OS&H Review Commission). A citation may become a final order by operation of law when an employer does not contest the citation, or pursuant to court decision or settlement. The underlying citation which the repeated violation will be based on must have become a final order before the occurrence or observation of the second substantially similar violation. (OSHA FOM Chapter 4, Section VII(A)(1). Pg. 4-21&4-22)

While that seems like a minor legalistic issue, it’s one of extreme importance if you have been cited for an OSHA violation. Let’s imagine a situation where your facility is cited for a training issue. While you certainly want to address that issue as soon as possible, it may be wise to delay the settlement of the OSHA violation until you can address the same issue in your sister facilities as well. Settling quickly with OSHA may expose those sister facilities to Repeat violations.

.

You actually came into compliance after the first citation:

They are different from “Failure to Abate” citations. If an employer never came into compliance after an initial OSHA’s initial inspection / citation, that is a “Failure to Abate.” If the violation was corrected, and then later reoccurs, that is a Repeated violation. (OSHA FOM Chapter 4, Section VII(F) Pg. 4-23)

This is only really a matter of the associated fine. If the citation is Repeat, the fine is capped at about $129k. If the citation is actually a Failure to Abate, the fine is capped at $12.9k a day for up to 30 days or $387k.

.

Why are we seeing more Repeat citations?

Inspectors are being told to specifically look for these issues:

During inspections, CSHO’s must pay particular attention to identifying instances of Repeated violations from season to season or past occupancy. (OSHA FOM Chapter 12, Section II(F)(3) Pg. 12-3)

During the course of the ChemNEP inspection, the CSHO shall review abatement for all PSM citations issued within the previous six years to determine whether the hazard still exists. (OSHA CPL 03-00-021, Section XI(E)(10) Pg. 31)

.

What are the ramifications of a Repeat citation?

The fines can be up to $129,336 for each Repeated citation. (OSHA Act of 1970, Section 17) (OSHA Website on Penalties)

A single Repeat citation involving a fatality can place you in the Severe Violator Enforcement Program (SVEP). Two or more Repeat citations can place you in the SVEP if you have a “High Emphasis Hazard” as outlined in CPL 02-00-149 (which includes PSM facilities) (OSHA FOM Chapter 11, Section II(M)(2)(a) Pg. 11-13)

SVEP cases often spread to the entire region or even the entire country if the facility has sister facilities in other areas. OSHA may choose to inspect those other facilities or issue an abatement demand for ALL the sister facilities based on conditions found at SOME of them. Furthermore, OSHA “shall consider going beyond the subject of the citations to include additional safety and health program enhancements,” even for items that were not cited during the inspection. (CPL 02-00-152)

No reduction shall be given for repeated violations. If a repeated violation is found, no reduction for good faith can be applied to ANY of the violations found during the same inspection. (OSHA FOM Chapter 6, Section III(B)(3)(a) Pg. 6-7)

Each repeated violation is evaluated as serious or other-than-serious, based on current workplace conditions, and not on hazards found in the prior case. (OSHA FOM Chapter 6, Section V(A)(1) Pg. 6-11)

Repeat violations can be the basis of 11B enforcement action where the US Court of Appeals is asked to enforce the order. (OSHA FOM Chapter 15, Section XIV(B)(3) Pg. 15-14)

Obviously, there’s a lot of dollar signs involved, but that’s just the start of the possibilities. The real damage can come from becoming enrolled in the Severe Violator Enforcement Program or SVEP.  The SVEP program is a nightmare that you want to avoid. I really can’t summarize it better than Eric Cohn did at OSHA Defense Report.

An employer is entered into SVEP at the outset of an OSHA case, prior to an opportunity to defend itself and prove wrong OSHA’s alleged violations. Notwithstanding this end run around Constitutional Due Process, once in the program, SVEP employers are immediately subject to:

  • Public shaming by OSHA through both an inflammatory, embarrassing, and one-sided press release detailing the alleged violations and by posting the employer’s name on a Severe Violator list on OSHA’s public website;Severe Violator Image
  • Mandatory follow-up inspections at that cited facility and up to ten sister facilities within the organization; and
  • More expansive settlement terms than ever before, including corporate-wide requirements.

.

How far back can OSHA look for a previous citation to use as the basis for a Repeat?

Short answer – As long as they want. Long answer:

Although there are no statutory limitations on the length of time that a previously issued citation can be used as a basis for a repeated violation, it is OSHA policy that they are only to be issued withing five years of the final order date of the previous citation or within five years of the final abatement date, whichever is later, or five years from the issue of a final order from the OS&H Review Commision or final mandate from the US Court of Appeals. (OSHA FOM Chapter 4, Section VII(E)(1) Pg. 4-23)

  • Recent Court rulings have shown that since there are no statutory limitations on the Look-Back period, OSHA could issue Repeat citations based on citations older than five years. (OSHRC Triumph Construction)

  • Under OSHA Commission precedent, the “time between violations does not bear on whether a violation is repeated.” (OSHRC Hackensack Steel)

This long reach means that you need to know your history – and the history of your sister facilities.

.

While we certainly hope you never get cited by OSHA for a PSM violation, if it does happen, please don’t hesitate to contact us.

.

Sources: OSHA FOM, CPL 02-00-149 (SVEP), CPL 02-00-152, CPL 03-00-021, OSHA Act of 1970 (Judicial Review), OSHA Website on Penalties, OSHRC Triump Construction, OSHRC Hackensack Steel.

OSHA Announces Higher Penalties for 2018

In a recent  Federal Register notice, OSHA has announced updated fine amounts for 2018.

OSHA penalties for other-than-serious, serious and failure to abate violations increased by $319 from $12,615 per violation to $12,934 per violation.

The penalty for willful and repeat violations increased from $126,749 to $129,336, an increase of $2, 587.

The new penalty increase is effective immediately and will apply to any citations issued through the remainder of 2018.

Note: This only applies to Federal OSHA states but it’s very likely that State Plans will follow.

Answering the OSHA NEP Document Request List

OSHA’s published CPL-03-00-021 – “PSM Covered Chemical Facilities National Emphasis Program” includes an example document request list that often correlates fairly well to the one that OSHA inspectors provide during an NEP inspection. Below, I’ll outline how programs using our PSM system can answer those requests with PSM documents.

Table 1 – Documents That Should Be Requested Prior to Identifying the Selected Unit(s)

OSHA 300 logs for the previous three years for the employer and the process-related contractors*.

Documents regarding your OSHA 300 logs should be kept by your Safety Department. This is addressed in your Contractor Element Written Plan for the contractor and it’s likely your Safety Department.

All contract employee injury and illness logs as required by 1910.119(h)(2)(vi)*.

Most NH3 Refrigeration PSM facilities handle this with the contractor’s OSHA 300 logs.

A list of all PSM-covered process/units in the complex.

The vast majority of NH3 Refrigeration PSM facilities have a single covered process in the complex. If you have multiple processes on the same site, you likely handle / explain this fairly well in your RMP Hazard Assessment documentation.

A list of all units and the maximum intended inventories* of all chemicals (in pounds) in each of the listed units. Compliance Guidance: 1910.119(d)(2)(i)(C) requires employers to have process safety information (PSI) for the maximum intended inventories of chemicals that are part of their PSM-covered processes.

The inventory of the covered process(es) is in the PSI directory in a spreadsheet that shows the Inventory Calculation. Documentation regarding the Maximum Intended Inventory is handled in the PSI Element Written Plan.

A summary description of the facility’s PSM program.

The RMP Element Written Plan includes this information in general – individual Elements have information concerning that element in the Element Written Plan.  Showing the inspectors the procedural sections in the RMP entitled “Implementation Policy: Risk Management Prevention Plan” & “Implementation Policy: Management of Program Activities” has generally been more than sufficient to answer this question.

Unit process flow diagrams*.

Most NH3 Refrigeration PSM facilities handle this in the P&ID’s – possibly in conjunction with a Block Flow or Mass & Energy Balance.

Process narrative descriptions.

This is addressed in the beginning of the System ROSOP as well as in the individual equipment RESOPs.

Host employer’s program for evaluating contract employer’s safety information.

This is addressed in your Contractor Element Written Plan. Your documented use of forms CQ1-CQ4 should provide adequate information to answer the question.

Host employer’s program/safe work practices for controlling the entrance/exit/work of contractors and their workers in covered process areas.

This is addressed in your Contractor Element Written Plan. Likely, it redirects you to the facility Safety / Risk Management policies.

Emergency Action Plan* (If the employer has 10 or fewer employees they may communicate the plan orally (29 CFR 1910.38(b)) — i.e., they may not have a written emergency action plan; and Emergency Response Plan* if the facility is also required to comply with 29 CFR 1910.120(q).

This is generally handled by your Safety Department as it is a “general industry” requirement.

Host employer’s program for periodically evaluating contractor performance.

This is addressed in your Contractor Element Written Plan. Your documented use of form CQ6 should provide adequate information to answer the question.

Table 2 – Documents That Should Be Requested After the Selected Unit(s) Are Identified

Piping and instrumentation diagrams (P&IDs) including legends*.

Your P&ID collection will include title sheets that satisfy the requirement for legends.

Unit electrical classification documents*.

The vast majority of NH3 Refrigeration PSM facilities cover this in a stand-alone letter provided in the PSI directory. That letter will reference your IIAR RAGAGEP stating that the system is “unclassified” or an “ordinary location.” Your electrical classification is contingent on an accurate and compliant Ventilation calculation which should be in your PSI directory.

Descriptions of safety systems (e.g., interlocks, detection or suppression systems)*.

Safety systems (e.g., interlocks, detection or suppression systems) are covered in each individual RESOP for each individual piece of equipment.

Design codes and standards employed for process and equipment in the Selected Unit(s).

The vast majority of NH3 Refrigeration PSM facilities cover this in a stand-alone letter provided in the PSI directory. That letter will document which RAGAGEP you’ve chosen and it also provides a place for you to certify it.

A list of all workers (i.e., hourly and supervisory) presently involved in operating the Selected Units(s), including names, job titles, work shifts, start date in the unit, and the name of the person(s) to whom they report (their supervisor).

This information should be captured in the individual operator OT1 forms in the Training Element directory. You may have to supplement the OT1 forms with information from your HR department.

The initial process hazard analysis*(PHA) and the most recent update/redo or revalidation* for the Selected Unit (s); this includes PHA reports*, PHA worksheets*, actions to address findings and recommendations promptly*, written schedules for actions to be completed*, and documentation of findings and recommendations*. Compliance Guidance: Any PHA performed after May 25, 1987 that meets the requirements of 1910.119(e) may be claimed by the employer as the initial PHA for compliance purposes, see 1910.119(e)(1)(v).

The PHA is located in the Process Hazard Analysis directory. It is not generally our custom to “revalidate” PHA’s but to complete a new PHA (compliant with the IIAR Compliance Guidelines questions) during the 5yr “revalidation.”

Safe upper and lower operating limits for the Selected Unit(s)*.

Safe upper and lower operating limits are covered in each individual RESOP for each individual piece of equipment.

A list by title and unit of each PSM incident report; all PSM incident reports for the Selected Unit*.

Generally speaking, the Incident Investigations aren’t sorted by unit, but providing all the Incident Investigations that have been created over the document request period should suffice.

Contract employer’s safety information and programs (this will be requested from the host employer after it is determined which contractor(s) will be inspected).

This is addressed in your Contractor Element Written Plan. Your documented use of forms CQ1-CQ4 should provide some information to answer the question. In facilities that allow contractors to provide their own Safety Programs, you will need to be able to provide those programs as well as your evaluation of them. The vast majority of NH3 Refrigeration PSM facilities  do not allow contractors to use their own Safety Programs – instead requiring them to use the established facility Safety Programs.

Contractor employer’s documentation of contract workers’ training, including the means used to verify employees’ understanding of the training* (this will be requested from the respective contractor employer(s) after it is determined which contractor(s) will be inspected).

This is addressed in your Contractor Element Written Plan. Your documented use of forms CQ3-CQ4 should provide adequate information to answer the question.

Note: This older Post provides additional questions from a recent NEP inspection.

Updated MI / II Written Plan templates

The Mechanical Integrity and Incident Investigation Written Plans were updated this week to encompass the addition of an Acceptable Task Frequency Window. Essentially, this provides written guidance on task-scheduling slippage. The majority of the change is in the MI element:

Note that this written guidance directs you to the Incident Investigation element if you find that tasks are sliding outside the acceptable window. The only change in that element was to provide this schedule slipping as an example of an event that should be considered a Process Upset/Interruption.

A hat tip to the IRC at the University of Madison Wisconsin for bringing this idea to our attention in their excellent book Principles and Practices of Mechanical Integrity Guidebook for Industrial Refrigeration Systems. We’ve somewhat altered their suggested schedule and our integration into the standard template program wraps it into the Incident Investigation element to deal with those times that our tasks slip outside the acceptable task frequency window. 

As always, the updated Written Plans are available on the shared drive.

Update: Minor change made to the PHA Element Written Plan to correct a numbering issue. Thanks Mindy!

Preparing for a PSM/RMP Inspection

The most requested PSM/RMP presentation I give is on preparing for an OSHA Process Safety Management / EPA Risk Management Program inspection. I turned that presentation into a narrated video which is linked below.

The Cyrus Shank LQ Series Relief Valves – A Discussion on Manufacturer’s Recommendations and the 5 Year Pressure Relief Valve Interval

Many facilities I’ve been to recently use the Cyrus Shank LQ Series valves for internal/liquid relief applications. At these facilities, there tends to be some confusion on the 5-year replacement schedule since these are internal relief valves but still come with a replacement date tag.

Allow me to explain the conflict here:

Back in 2007, the IIAR issued a revision to their Bulletin 110 (Start-up, Inspection and Maintenance of Ammonia Mechanical Refrigerating Systems) which clarified the current standard on replacing or recertifying pressure relief devices. It states that you have 3 options for setting your relief valve replacement schedule:

  1. Every five (5) years from the date of installation. IIAR originally recommended (in 1978) that pressure relief valves be replaced every five years from the date of installation. This recommendation represents good engineering practice considering the design and performance of pressure relief devices; or
  2. An alternative to the prescriptive replacement interval, i.e., five years, can be developed based on documented in-service relief valve life for specific applications using industry accepted good practices of relief valve evaluation; or
  3. The manufacturer’s recommendations on replacement frequency of pressure relief devices shall be followed.

It’s a fairly straightforward list that led to both facilities and manufacturers setting a replacement schedule not to exceed 5 years unless conditions warranted earlier replacement of the devices. The major follow-up question for schedulers is what to do with internal or liquid relief valves, since they’re not usually subject to the same concerns as atmospheric relief valves.

The same IIAR bulletin covers this as an exception to the previous recommendation, stating that:

“Relief devices discharging into another part of the closed-loop refrigeration system are not subject to the relief valve replacement practices.”

Internal relief devices come in many configurations, so relief valves designated for liquid use are normally treated the same as relief regulators or similar devices in that they aren’t replaced until a regular inspection (or system operation) indicates the need.

Generally speaking, when we set our mechanical integrity schedule we first check the standards (IIAR Bulletin 110 in this case) and then modify that schedule based on the manufacturer’s recommendations for our specific equipment. The issue that occurs here is that the Cyrus Shank bulletin issued for their relief valves recommends that they be replaced at least every five years, without specifying which type. After contacting Cyrus Shank, their engineering department responded with the following:

“The cut sheet is a general recommendation that would apply to all of our valves, including the LQ valves. There is one difference between the vapor service valves and the liquid (LQ) ones: the LQ valves have a slightly different sealing ‘surface’ as compared to the vapor. Other than that, they are essentially the exact same in design. The replacement/inspection intervals greatly depend on the nature of the contents and operation of the system so only general recommendations can be given.  We would still recommend the general 5 year replacement interval for both the vapor AND liquid service valves regardless of application. However, the replacement interval is ultimately up to the customer. “

To be consistent with the other justifications in our (manufacturer recommendations based) mechanical integrity schedule, that means that we’ll be replacing those LQ Series valves at least every five years as well. It’s important when setting up a compliant program that we stay informed of all the different RAGAGEP sources that can affect our program. The exception in IIAR Bulletin 110 actually does allow us to set our schedule based on a method of our choosing, but our justification must be defensible. Our defense normally comes from the manufacturer recommendation, so in this case we would have to follow the 5-year recommendation on LQ valves as our RAGAGEP.

10/10/17 Update: Some people have suggested that statements from Cyrus Shank marketing materials somehow override the statements of the Cyrus Shank engineering department. This is absurd and a fundamental misunderstanding of RAGAGEP. If the Cyrus Shank engineering department changes their position then this issue can be re-evaluated, but until then it remains as shown above.

For more on this topic, click here.

11/09/18 Update: Cyrus Shank has helped us deal with this issue!

 

« Older posts