Tag: IIAR 2

Updated IIAR 2-2021 Standard Released

IIAR 2 – 2021 Standard for Design of Safe Closed-Circuit Ammonia Refrigeration Systems has been released by the IIAR and is now available for purchase on their website

The updated standard has several new requirements which resulted in some changes in the PSM/RMP program templates. Here are some of the highlights:

  1. The definitions file was updated with new IIAR 2 definitions. Added in-document headings to skip around the document easily.
  2. The PHA Checklist Template was updated to the new IIAR 2:
    • Added a note that “Provisions for plugs or caps required under IIAR 2 5.9.3.3” on all oil draining plug/cap questions.
    • Added a note that “IIAR 2-2021 5.12.2 requires a check valve during charging” in relevant Charging SOP section.
    • Added a question on Provisions for Pumpout per IIAR 2-2021 5.12.6 on PV1 subsection and all Equipment Subsections.
    • Added/Modified questions on RC1 section about low ambient temperature, and VFD resonance.
    • Added a question on EV2 (Liquid Heat Exchanger) equipment subsection regarding secondary coolant side pressure ratings.
    • Added a question on MR.C Checklist for Classified Space signage.
    • Added a question on PV1 (Piping & Valves) on new MOPD & MSSPD requirements for valves leading to atmosphere.
    • Added a question on PV1 (Piping & Valves) on requirements for unique identification for Emergency Shutoff valves.
    • Modified existing .PSV equipment sub-subsections to include IIAR 2 2021 15.2.6 requirement that liquid relieving reliefs relieve back into the system.
    • Added a note that IIAR 2 2021 13.2.3.1.1 limits carbon steel tubing and carbon steel compression fittings to valve sensing pilots, compressors, compressor packages, and packaged systems to all small-bore piping / tubing questions.
    • Updated MR.C section for new requirements regarding NH3 detection.
    • Updated various checklists (VENT, DET, PSV, DT) to match current IIAR 2-2021 text.
    • Added a new equipment subsection NMR.C for IIAR 2 Equipment located outside of Machinery rooms.
    • Added a new equipment subsection PKG.C for IIAR 2 Packaged Systems and Equipment.
    • Added a new equipment subsection IAC.C for IIAR 2 Instrumentation Controls.
  3. Updated “Contractor Door Sign” to meet new IIAR 2 – 2021 [5.14.1.1] information standards and some ASHRAE 15 – 2019 [11.2.1] standards.

Comments about the changes and the required steps to implement the document changes are present in the “Change Log and Reference” document at 08/02/21.

…Read on further in this post if you want to know about the changes in the new IIAR 2…

 

Continue reading

PHA Synergy: How to get more out of the PHA process

According to 1910.119(e) and 40CFR68.67(a) the purpose of a PHA is to “…identify, evaluate, and control the hazards involved in the process.” Since the mid-90’s the refrigeration industry has done this mainly through the IIAR’s “What-If” methodology as suggested in their Compliance Guidelines materials.

There have been many revisions of this material over the years, but they all have the same thing in common as you use them: You can see how each question / item:

  • Poses a failure scenario (sort of a lesson someone else has already learned)
  • Prods you to solve the issue through an existing RAGAGEP

For example, a question might ask something like “What if plugs, caps, or blind flanges are missing on purge or drain valves?” This should prod you to recall that both IIAR 2 and IIAR 4 require that these things be plugged, capped, etc. This should also prod you to ask how you are addressing this requirement in your Process Safety Program.

The issue we always came across is that you must KNOW or MEMORIZE what the RAGAGEP says in a very complete way, or you miss the connection between the “What If” scenario and the RAGAGEP. This is nearly impossible because it seems like RAGAGEP is multiplying at an alarming rate. Furthermore, this (at least two day) process often feels like a futile effort at figuring out what the “What-If” scenario questions are really getting at.

To improve this years ago, I started adding two things to the IIAR standard questions:

  1. References to the IIAR standards where appropriate. (For example, in our plug question, reference IIAR 2-2021 13.3.2.6 & IIAR 4-2020 10.4.5.4)
  2. Explicit checklists that allow you to compare your system to appropriate RAGAGEP outside of the “What If” scenarios.

 

It’s very easy to lose sight of evolving RAGAGEP over time. These checklists allow you to perform a forensic examination of your system compared to current RAGAGEP. In addition to the issue of improving RAGAGEP compliance, we also face other challenges.

  1. It is common to show up to perform a PHA and find the client lacks critical Process Safety Information and PSM elements & procedures making a compliant PHA extremely difficult or impossible.
  2. Incident Investigations are often in a state of disarray or incomplete making their inclusion in the PHA difficult at best, and almost meaningless at worst.
  3. IIAR 9 now requires an evaluation against its minimum requirements for all NH3 refrigeration systems at least every five years.
  4. In some regions the EPA has an almost absurd number of questions they “like” to see in your Facility Siting sections.
  5. The Emergency Action Plan is a critical safeguard in your program, and it is usually missing some basic items that aren’t apparent until you try and use it in an emergency.
  6. Finally, the IIAR has standards on Installation, Commissioning, and Decommissioning that are often overlooked.

 

This again leads us back to checklists. I created them for basic PSI & PSM items, Incident Investigations, IIAR 9, Facility Siting, EAP, IIAR 4, IIAR 6, and IIAR 8. Here’s what that looks like:

As you can see, that’s fairly comprehensive, but it’s also a lot more work! To adjust to all this, we usually perform PHA’s in a two-step process.

Step 1: Weeks in advance, we give the client the relevant checklists and have them fill them out to the best of their ability.

Step 2*: Once we’re on-site, we go over the checklists they’ve worked on to answer any questions, address discrepancies, etc. THEN we move on to the “What If” scenarios.

* Of course, if the client wants, we can always book another two or three days of our time helping them on-site with Step 1.

 

The result of this longer, more comprehensive process is:

  • A nearly point-by-point check of the facility (and their Process Safety program) against common RAGAGEP from a HAZARD perspective rather than a compliance one.
  • A much better understanding of the “What If” scenario questions when we get to them after the checklists.
  • Cleaner, more systemic recommendations that point to specific hazards and the RAGAGEP that most effectively addresses them.
  • At the end of the PHA process, facility team members have a much clearer understanding of where the requirements and recommendations are coming from.

You can learn more about our PHA offerings here. Email or call us today to have RC&E assist you with all your PSM/RM Program needs! [email protected]    (888) 357-COOL (2665)

RAGAGEP Deficiencies and building a defensible case for an alternative solution

This issue: During a PHA, the facility is using an IIAR 2-2014a checklist and finds that the installation does not meet the requirements of section 6.14.3.3.

6.14.3.3 *Machinery room exhaust shall be to the outdoors not less than 20 ft (6 m) from a property line or openings into buildings.

The distance from the machinery room emergency exhaust outlets on the roof to a rooftop door leading into the building is approximately 8 feet. This is a 1910.119(j)(5) deficiency and a 1910.119(d)(3)(iii) RAGAGEP violation. They have a recommendation to address the issue.

Let’s think about the implications of this issue.

 

The Analysis: If there was an ammonia leak in the machinery room that activated the emergency ventilation, then the fans would exhaust on the roof very close to this door. In PHA terms, this could be thought of as a “siting” issue.

This situation is pretty rare: only technicians are allowed on the roof, and they are only up there for routine inspections and maintenance. Still, there are two ways the technician could be exposed to this hazard. If they used the door to:

  1. Access the building’s internal stairway from the roof.
  2. Access the roof from the building’s internal stairway.

For situation #1, a release would be easily observed / heard while on the roof in the area of the ventilation fans. There are also other entrances back into the building, including external stairs to the ground level. The team decided this situation was acceptable without any changes.

For situation #2, it would be possible (although not likely due to the noise of the fans) that someone could use the door to access the roof without knowing that they could be exposed to a release on the other side of the door. The team decided this was an unlikely, but possible issue. That is – it’s an unlikely turn of events that a release in the machinery room would occur at the same time as someone would be using the door – but it was possible so it should be addressed.

Obviously, the cleanest solution would be to move either the door or the fans, but that’s not an easy thing to do! Also, it would be a very expensive fix for an issue with such a low probability of occurrence.

The team brainstormed a bit and came up with an alternative plan to address the issue.

 

The chosen Solution: First, there are only two ways the fans could be exhausting a large amount of NH3 vapor. Either they would me manually operated due to maintenance / leaks or they would be automatically operated due to the IIAR 2-2014a 6.14.7.2.1 required NH3 detection interlock. Either way, a RUN signal is sent to the fan controls and the team decided to install a visual alarm on both sides of the door and use this RUN signal to activate it. Coupled with proper signage and training, the team believes the alarm would provide adequate warning to anyone approaching the door that the emergency ventilation system was running and that the door should not be used.

The team believes this is a defensible solution to non-compliance with IIAR 2-2014a 6.14.3.3. I tend to agree with them – it’s defensible if imperfect.

Perhaps another, actually compliant solution, would be to install ductwork on top of the emergency exhaust fans to raise the exhaust point so the distance from them to the door would meet the 20-foot requirement. Of course, such a change would require a new ventilation calculation to ensure the additional restriction caused by the duct work didn’t pose a problem. This ducting solution would likely be a bit expensive and that could mean that it would take some time to implement. If this duct solution was chosen,  the earlier “alarm” idea would be an excellent interim measure until approval and construction of the ducting project occured.

Note: This 20’ requirement appears to show up first in IIAR 2-2008a effective August 2010. Previously the requirement was a vaguer “13.2.3.11 The discharge of air shall be to the atmosphere in such a manner as to not cause inconvenience or danger.”