Author: Brian D. Chapin (Page 2 of 11)

Known as the "PSM Evangelist" and the "Jon Taffer of Ammonia PSM," I have taught over 1,000 people how to implement PSM/RMP in their Ammonia processes. It is my honor and privilege to work with the finest minds in the industry. I fuse Six Sigma / Lean / Kaizen philosophy with PSM/RMP to minimize compliance burdens and maximize the safety & efficiency gains of a properly implemented program.

Here are some highlights:

- Designed, Built and Continuously Improved OSHA Process Safety Management, EPA Risk Management and Process Hazard Analysis Programs for Industrial Ammonia Refrigeration systems all over the country.

- Comprehensively audited OSHA Process Safety Management, EPA Risk Management in facilities throughout the United States in facilities of all sizes from 10,000 pounds to over 300,000. Processes ranged from Ammonia Refrigeration to N02 reduction and Synthetic Rubber production.

- Lead Author and Project Manager for the book “Implementing Process Safety Management for Ammonia Refrigeration” used as the textbook for teaching PSM for over 100 companies a year.

- Through FOIA, I have read the citations, 1B's and narratives to every PSM citation issued by OSHA from 2008-2013.

- Managed Refrigeration Projects including Expansions, System Optimization and Capital Projects.

- Acted as HazMat Incident Commander and Team Member.

- Skilled in Incident Investigation and Root Cause Analysis.

- Background in Six Sigma, Lean and Kaizen implementation in manufacturing.

- Familiar with ISO 9000 & SQF programs.

- Organized CMMS (Computerized Maintenance Management System) Implementation.

- P&ID creation and modification.

- Completed many projects in Energy Conservation and System Optimization of Refrigeration Systems.

What is the best way to train my ammonia refrigeration operators?

Nearly 3 years ago we posted an answer to the question “What training does my refrigeration operator need?

In our experience, to get a good understanding of the Overview of ammonia refrigeration – the fundamentals of how it works – facility provided one-on-one hands-on training is the most effective training approach. This is the approach used for the vast majority of the skilled trades and it is proven effective. Unfortunately, if you don’t already have in-house expertise, there’s nobody to provide the training! A facility lacking on-site talent to act as trainers is when 3rd party providers can provide some value.

We’ve been getting a lot of questions lately centered around getting the best “bang for your buck” when using outside training providers. This post is solely about operator training. That is, the training we need to provide for our refrigeration operators that can be done by outside training providers – Process Safety training will be addressed briefly at the end.

If you don’t already understand that the training these providers offer is usually only going to address a small portion of the overall PSM training requirements, please read “What training does my refrigeration operator need?” before proceeding. I’ll reinforce a key point from that post though: The standard classes offered by most ammonia “schools,” even if they are done properly, only address a portion of the training burden – a small piece of the Overview of the Process requirement. You cannot send your personnel off to some 4-day class and get a qualified operator in return. (Buying a laminating machine doesn’t give you any authority to certify operators, but that’s another post. If you want credentials that matter, go to RETA)

We’re going to answer this question in three parts:

  • What kinds of programs are there?
  • What are the benefits and drawbacks of each training approach?
  • What training approach do we recommend?

 

What kinds of programs are there?

Broadly speaking, the available options break down into three groups:

  1. Self-directed
  2. Instructor based ON-site
  3. Instructor based OFF-site

Self-directed: You give your employee access to refrigeration books (such as the excellent RETA series) and they teach themselves the topic. You might also supplement this with online training which provides feedback and automated testing such as the RETA online training.

Instructor based On-site: Various training providers offer classes taught by an instructor at your facility.  These classes usually run 8-10 hours a day for 3-5 days.  With your approval, the class can use your refrigeration system for any illustration or “hands-on” purposes. If you have enough students, you can make these classes private – meaning only students from your company attend. This allows you to customize the content to reflect your policies. It also allows you to be a little more open about your practices and shortcomings in class discussions.

Instructor based Off-site: Various training providers offer classes taught by an instructor at the training companies “school.” These classes usually run 8-10 hours a day for 3-5 days.  Some of these training providers have built small refrigeration systems (“labs”) that they use to illustrate concepts during “hands-on” sessions. Like the on-site classes, if you have enough students, you can make these classes private.

 

What are the benefits and drawbacks of each training approach?

Program Type Pro Con
Self-directed
  • Lowest cost
  • Flexible scheduling (can be done during low demand times and in off hours)
  • Self-paced
  • Students can pick-and-choose relevant topics and avoid things that don’t apply to your system.
  • Online versions offer good documentation and testing feedback.
  • Bad fit for people that aren’t self-starters
  • Requires above-average reading comprehension skills
  • Questions need to be directed to on-site resources so if you don’t have them, you must reach out to contractors or industry colleagues.
Instructor based ON-site
  • Lower cost compared to Off-site because you avoid lodging, travel, travel time, and most meal expenses.
  • You can set up the class time block for a time convenient to your operations. Many facilities choose to schedule these classes during an off-season.
  • Students are available on-site in case of actual facility emergencies.
  • Instructor-based training can be more responsive and open to questions.
  • “Hands on” and procedural training can be done with your actual equipment and procedures & policies.

 

  • Higher cost compared to self-directed
  • While you can schedule the instruction for any convenient time block, once you have the time locked in, students need to be able to stay in the class during the entire time block.
  • Usually the minimum class size is 8-10 people, so you have to pull a lot of talent into this class or open it up to others. Once you open it up, you also lose the ability to customize the class.
  • There is a tendency to pull students out of the class during the instruction for maintenance “emergencies” more than is actually necessary.
  • Class pace is dictated by the class schedule and tends to move at the pace of the slowest learner in the group. 
  • Many facility’s lack adequate training classrooms. At a minimum, you need a quiet, comfortable space with a projector and screen.
  • Content is usually set, and your students may learn about a lot of equipment and technologies that aren’t applicable to your system. If you are performing a sole-company class, the content can be customized to your needs and equipment, but this may cost extra.
Instructor based OFF-site
  • Students are off-site and can’t be pulled for emergencies.
  • Instructor-based training can be more responsive and open to questions.
  • Most training providers provide clean, comfortable training classrooms.
  • Highest cost when you factor in travel costs, travel time, lodging, meals, etc.
  • You must arrange to meet the schedule of the training provider.
  • Your students are off-site and not available for any facility emergencies.
  • Even though the students are off-site, they will probably be pulled away for endless phone calls and teleconference meetings.
  • Class pace is dictated by the class schedule and tends to move at the pace of the slowest learner in the group. 
  • “Hands on” and procedural training are not done with your equipment and procedures & policies.
  • Content is usually set, and your students may learn about a lot of equipment and technologies that aren’t applicable to your system. If you are performing a sole-company class, the content can be customized to your needs and equipment, but this may cost extra.

 

What training approach do we recommend?

Unless your operators are natural autodidacts (PSM people often prefer learning out of books, for example) self-directed training is not a good fit for most operators. For most organizations, your best bet is instructor-based learning.

As with any training, the more relevant you can make it to your day-to-day operations, the more effective it will be. When you don’t have the on-site expertise to provide training, we think Instructor based ON-site training is the best choice for most organizations. It tends to be more focused on your equipment, procedures & policies and it is more cost effective than off-site training.

One last note: Be extremely mindful of your selection of a 3rd party provider for ANY training, because the instructor’s attitude and knowledge may well affect your safety culture.

PSM-ONLY Note: if you are looking for PSM training – training on how to be a PSM coordinator, or simply to better understand Process Safety systems – then we’d recommend the same as for operator training. But, most organizations don’t have someone sufficiently skilled to provide one-on-one training, so we’re left to seek a 3rd party. Unfortunately, most facilities don’t have enough people for a full class either, so you either need to combine with other facilities in your company (which allows you to have customized training on your policies & procedures) or combine with other organizations to get enough people for an in-house class. Because this is difficult to do, the Instructor based OFF-site option becomes the only one available. While we don’t provide Operator Training, we do offer PSM training.

 

Bonus editorial content: How important is “hands-on” training?

For the purposes of these classes, it is my opinion that the “hands-on” portion of these classes, as it is usually provided, is of little to no value. WHAT!? Allow me to explain:

  • Learning Styles: “But my operators all claim to prefer a ‘hands-on’ learning style!” or “Our operating staff are tactile learners” you say. The idea of learning styles is most likely a “neuromythology” – a popular idea that endures despite having little evidence to support it. In any case, these classes usually don’t really let them “operate” the system in any meaningful way so the “benefit” of “tactile” learning due to “hand-on” training is minimal…
  • “Hands-On”: I used to be an instructor in an organization that provided a lot of classes in the on-site and off-site instructor-based model. The organization provided a lab with “live” ammonia refrigeration systems. Typically, the students spent about a third of their time in this lab, in a group setting. In my opinion, this lab time had very little value for most students. Again, these classes usually don’t really let them “operate” the system in any meaningful way so they are just turning a few valves and conducting exercises in locating valves on PIDs. Certainly, you can manage that level of “hands-on” training at your facility! (I’m sure you can understand why: the liability in letting students operate equipment is HUGE.)

Furthermore, this lab equipment is not the same equipment in your facility, and I can assure you (unless you are woefully non-compliant with General Duty, General Industry standards and PSM/RMP) that their procedures & policies are not YOUR facilities procedures & policies. Most of the benefit that can be gained from “hands-on” training should be done at YOUR facility with YOUR equipment using YOUR procedures and policies. This is how and where the vast majority of your training should actually happen.

Should we perform an Incident Investigation for Hail Damage?

The Issue: Recently an industry friend reached out with a question that I thought was worth sharing. They recently had some fierce storms roll through their area that involved tennis-ball sized hail. This hail caused some insulation damage, but didn’t cause any ammonia release. Here are some pictures of the type of damage they experienced.

Hail Damage pictures

Hail Damage pictures

The question is “Would this require an Incident Investigation?”

 

The Law: As always, first we look at the law.

OSHA 29CFR1910.119(m)(1): The employer shall investigate each incident which resulted in, or could reasonably have resulted in a catastrophic release of highly hazardous chemical in the workplace.

EPA 40CFR68.81: The owner or operator shall investigate each incident which resulted in, or could reasonably have resulted in a catastrophic release.

While there is obvious damage to the protective jacketing and vapor barrier, you could make a defensible argument that this is not something that could “reasonably have resulted in a catastrophic release of highly hazardous chemical.” That’s not to say there isn’t any value to such an investigation, but that there most likely is not a requirement to investigate this incident based solely on the PSM/RMP rules. But, the rules aren’t the only guidance available to us, so let’s look further.

 

RAGAGEP and Written Programs: In my opinion, the best RAGAGEP available on the topic is the CCPS book Guidelines for Investigating Chemical Process Incidents, 2nd Edition, which is what inspired the approach we take in our Incident Investigation element Written Plan. Similarly, the IIAR’s publication PSM & RMP Guidelines makes roughly the same types of arguments and include an EPA suggestion that any damage of $50,000 or more should be investigated. If you’ve priced insulation recently, you know we’re likely to hit that threshold.

Here’s the relevant part of our Incident Investigation element Written Plan which incorporates the CCPS guidance:

An Incident is an unusual or unexpected occurrence, which either resulted in, or had the potential to result in:

  • Serious injury to personnel
  • Significant damage to property
  • Adverse environmental impacts
  • A major disruption of process operations

That definition implies three types or levels of incidents:

Accident – An occurrence where property damage, material loss, detrimental environmental impact or human injury occurs. (off-site Ammonia release, product in freezer exposed to ammonia, personnel injury, etc.)

Near Miss – An occurrence when an accident could have happened if the circumstances were slightly different. We sometimes call these incidents “An Accident where something went right”. (Forklift strikes an air unit causing only cosmetic damage and no Ammonia is released, an activation of an automatic shutdown, etc.)

Process Upset / Interruption – An occurrence where the process was interrupted. (Vessel high-level alarm, a nuisance ammonia odor report, ice buildup on an air unit preventing it from cooling properly, failing to conduct required PSM activities as scheduled, etc. Many Process Interruptions are fixed before the event leads to a shutdown. If the equipment was shut down manually or automatically in response to an unexpected occurrence, then the incident is to be investigated as a Near Miss.

This storm damage would seem to trigger the “Significant damage to property” part of the Incident definition and classify it as an Accident due to “property damage.” In accordance with the relevant RAGAGEP and our element Written Plan, we’d expect you to conduct an Incident Investigation despitedefensible argument that the PSM/RMP rules do not require one.

 

What we accomplish with an Incident Investigation: With a formal assessment of the incident, we’re hoping to document the following:

  1. The safeguards in place were adequate such that an ammonia release did not occur;
  2. The damage was investigated and found to be largely cosmetic with no significant effect on integrity, and limited effect on efficiency;
  3. Provide a documented recommendation to address the damage, both in the long term (replacement/repair) and short-term (sealing up any vapor barrier tears with caulking for example);
  4. Provide a method of tracking the identified corrective actions to closure.

Conclusion: While it seems pretty clear the PSM/RMP rules themselves wouldn’t require an Incident Investigation, RAGAGEP would and there’s much to be gained from one.

Powered Industrial Trucks in Machine Rooms

Powered Industrial Trucks (PIT) in Machine Rooms are a known struck-by hazard.  What most people don’t realize is how serious the results of a PIT impact in a Machinery Room can be.

For example, a forklift / scissor lift impact that shears a 3″ TSS (ThermoSyphon Supply) or HPL (High Pressure Liquid) operating at a typical head pressure of 160PSIG results in a release rate of over 18,500 pounds per minute.

Many facilities attempt to establish a ban on PIT in their machinery rooms, but while the needs for PIT in machine rooms are very limited, there are situations where they are necessary. An outright ban won’t likely survive prolonged contact with reality.

To address this issue in a PHA, we usually recommend a Written Machine Room PIT policy as an administrative control. For years we’ve discussed the content of that policy informally with people. Recently a PSM coordinator shared her written policy & permit with us and after some alterations and formatting, we’re adding it to the SOP Templates section.

Front of the Permit:

Back of the Permit with additional explanations:

 

As always, you can find this on the Google Shared template drive.

Compliance in a time of COVID-19 Pandemic

The whole country is facing a very difficult situation right now as we all deal with both the COVID-19 disease and the effects of government’s response to it. Some customers (especially restaurant service) are seeing a 2/3rds drop in their business. Other sectors, such as Grocery, are seeing unprecedented demand. Either way, that’s a recipe for chaos.

One of the first cultural victims of chaos is usually the safety / regulatory community. We’re easy to ignore whether the reason is “we’re facing layoffs and bankruptcy” or “orders are up 300% and we don’t have time for this.”

On top of that, in a good-faith effort to re-assure the regulated community that they understand the burdens we’re under right now, the EPA drafted a policy saying they would use discretion on compliance during the pandemic.

That EPA policy was interpreted by some (the environmental lobby mostly) as a blanket waiver of all regulations allowing the regulated community to pollute at will. More significantly worrying to me personally was the calls, emails & texts I started getting Friday where people in our refrigeration community were being “told” this temporary EPA policy was being used to avoid compliance with their PSM / RMP obligations.

With that in mind, let’s look at what it actually says, shall we?

 

What is the EPA actually saying?

Here’s the actual EPA press release. Here’s the actual EPA guidance memorandum. Here’s the important part:

  1. Entities should make every effort to comply with their environmental compliance obligations.
  2. If compliance is not reasonably practicable, facilities with environmental compliance obligations should:
    1. Act responsibly under the circumstances in order to minimize the effects and duration of any noncompliance caused by COVID-19;
    2. Identify the specific nature and dates of the noncompliance;
    3. Identify how COVID-19 was the cause of the noncompliance, and the decisions and actions taken in response, including best efforts to comply and steps taken to come into compliance at the earliest opportunity;
    4. Return to compliance as soon as possible; and
    5. Document the information, action, or condition specified in a. through d

The consequences of the pandemic may constrain the ability of regulated entities to perform routine compliance monitoring,  integrity testing, sampling,  laboratory analysis, training, and reporting or certification. … In general, the EPA does not expect to seek penalties for violations of routine compliance monitoring, integrity testing, sampling, laboratory analysis, training, and reporting or certification obligations in situations where the EPA agrees that COVID-19 was the cause of the noncompliance and the entity provides supporting documentation to the EPA upon request.

 

What does that mean for us in  PSM/RMP covered processes?

Short answer: Not a lot. Long answer follows…

 

Here’s some examples of what it might let you avoid a fine for:

  • Getting an annual compressor vibration analysis a few weeks late because all your contractor’s technicians were ill due to COVID-19
  • Performing a routine MI inspection late because your technicians were ill due to COVID-19.
  • Delaying some training, a compliance audit, PHA revalidation, etc. because of COVID-19 related travel restrictions.

 

Here’s some examples of what it definitely WILL NOT let you avoid a fine for:

  • Starting up equipment without a proper Pre-Startup Safety Review. (If you have time to start it, you have time to check it)
  • Making changes without implementing your written Management of Change policy. (If you have time to change it, you have time to do so safely)
  • Addressing existing recommendations and known problems.
    • If your SOPs have been out of compliance since IIAR 7 was published in 2013, this memo is NOT going to help you avoid fines because COVID-19 doesn’t explain the delay.
    • If your PHA hasn’t been updated to reflect the 2012 IIAR Compliance guidance, this memo is NOT going to help you avoid fines because COVID-19 doesn’t explain the delay.
    • If you haven’t provided documentation that your Operators and/or Contractors are properly trained, this memo is NOT going to help you avoid fines because COVID-19 doesn’t explain the delay.
    • If you have rusted pipes, and have for several years, but you still haven’t gotten around to dealing with them, this memo is NOT going to help you avoid fines because COVID-19 doesn’t explain the delay.
  • Delaying, or failing to report a release of ammonia. It does not affect the requirements to REPORT releases.

Accidental Releases: Nothing in this temporary policy relieves any entity from the responsibility to prevent, respond to, or report accidental releases of oil, hazardous substances, hazardous chemicals, hazardous waste, and other pollutants, as required by federal law, or should be read as a willingness to exercise enforcement discretion in the wake of such a release.

 

Closing thoughts

Unless you are in a very unique position, this EPA memo means very little to you at all. Here’s examples of two clients that it does affect:

  • Scheduled 5yr MI delayed: The client has delayed their scheduled 5yr MI inspection & audit because of travel restrictions in their state. Their intent is to schedule it as soon as it is reasonably safe to do so once this pandemic has passed. If they document how COVID-19 caused this delay, this memo helps them feel confident that the EPA understands the issue.
  • Compliance Audits delayed: The client still has until June to meet their 3yr date but had to delay their scheduled March compliance audits due to travel restrictions. Assuming the issue has passed, and they can reschedule before they hit their June requirement, they have no issue at all. If the issue continues such that they will not be able to complete their 3yr compliance audits before the deadline this EPA policy helps them if:
    1. The audit activities that can be done remotely are done before the 3yr date, and
    2. The audit activities that cannot be done remotely are done as soon as reasonably possible after the pandemic has passed. They will also need to document how COVID-19 caused this delay.

IIAR 2 202x Public Review 1

The IIAR has released a proposed draft of IIAR 2 Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems for public review. Here’s the notice:

March 20th, 2020

To:

IIAR Members

Re:

First (1st) Public Review of Standard BSR/IIAR 2-202x, Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems.

A first (1st) public review of draft standard BSR/IIAR 2-202x, Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems is now open. The International Institute of Ammonia Refrigeration (IIAR) invites you to make comments on the draft standard. Substantive changes resulting from this public review will also be provided for comment in a future public review if necessary.

BSR/IIAR 2-202x specifies the minimum safety criteria for design of closed-circuit ammonia refrigeration systems. It presupposes that the persons who use the document have a working knowledge of the functionality of ammonia refrigerating system(s) and basic ammonia refrigerating practices and principles. This standard is intended for those who develop, define, implement and/or review the design of ammonia refrigeration systems. This standard shall apply only to closed-circuit refrigeration systems utilizing ammonia as the refrigerant. It is not intended to supplant existing safety codes (e.g., model mechanical or fire codes) where provisions in these may take precedence.

IIAR has designated the revised standard as BSR/IIAR 2-202x. Upon approval by the ANSI Board of Standards Review, the standard will receive a different name that reflects this approval date.

We invite you to participate in the first (1st) public review of BSR/IIAR 2-202x. IIAR will use the American National Standards Institute (ANSI) procedures to develop evidence of consensus among affected parties. ANSI’s role in the revision process is to establish and enforce standards of openness, balance, due process and harmonization with other American and International Standards. IIAR is the ANSI-accredited standards developer for BSR/IIAR 2-202x, and is responsible for the technical content of the standard.

This site includes links to the following attachments:

The 45-day public review period will be from March 20th, 2020 to May 4th, 2020. Comments are due no later than May 4th, 2020.

Thank you for your interest in the public review of BSR/IIAR 2-202x, Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems.

There are MANY proposed changes. I’ll include a full list of the proposed changes at the end of the post, but here are some highlights:

  • Requirements for System Signage became a little simpler
  • Ammonia detection requirements have changed
    • Most installations now need two detectors in a machine room
    • Installation & Testing for detectors outside machine rooms now refer to external RAGAGEPs.
    • “Level 1” detection now requires liquid & hot gas shutoff at 150ppm
    • Requires AHJ approval if not installing ammonia detection in “Areas Other than Machinery Rooms”
  • New requirements for permanently installed Hoses and Corrugated Metal Fittings to ensure they meet ISO 10380 or ARPM IP-14

 

It’s important that YOU read these changes and make your voice heard if you have any input on them. 

 

Full change list of the normative sections of the standard below…


Continue reading

IIAR releases new ANSI/IIAR 9 standard

What you need to know about the new standard IIAR 9

IIAR 9-2020 has been officially released.

This is a new standard and it will require you to do certain things differently going forward.

 

What is it?

This document is a standard for minimum system safety requirements for existing closed-circuit ammonia refrigeration systems. The safety focus is on persons and property located at or near the premises where the refrigeration systems are located…

This standard provides a method to determine if existing stationary closed-circuit refrigeration systems using ammonia as a refrigerant comply with minimum system safety requirements.

For practical purposes it’s a way to deal with a system designed under an older RAGAGEP that doesn’t necessarily require you to update to the latest version of IIAR 2.

 

What’s the problem it’s solving?

How do you build a defensible case that your system built to an older code or standard is still designed, maintained, inspected, tested, and operating in a safe manner if it doesn’t meet the current code or standard? In PSM I refer to this issue as the d(3)(iii) trap. Here’s the relevant law:

1910.119(d)(3)(iii) For existing equipment designed and constructed in accordance with codes, standards, or practices that are no longer in general use, the employer shall determine and document that the equipment is designed, maintained, inspected, tested, and operating in a safe manner.

The way we traditionally did this is in the PHA where we either recommended the facility upgrade to conform to the latest version of the code or standard, OR has the PHA team build a defensible case that the alternative arrangement in the as-built / existing system was at least as safe as meeting the new code or standard. As you can imagine, this was not an easy thing to do.

 

How does this new standard affect me?

First, if you are already compliant with the current RAGAGEP (such as IIAR 2-2014a) then nothing much changes for you. If you are not compliant with the current IIAR 2 then it provides a different fallback position, because if you meet the requirements in IIAR 9, you now have an ANSI certified RAGAGEP that helps you defend the decision not to update to the current code or standard. Put another way: If your system is designed to IIAR 2-1999, then you might be able to use IIAR 9-2020 as an alternative to compliance with IIAR 2-2014a. 

Put in a flowchart, it looks like this:

Please note: this does not change NEW additions and systems – they are evaluated under current RAGAGEP. 

 

Is there anything else it requires?

The new standard requires an initial evaluation for IIAR 9 compliance within 5 years. It also requires that you re-evaluate that IIAR 9 compliance every 5 years thereafter.

 

How should I comply?

As with all compliance topics, there are lots of ways to get from here to there. I’m going with the EASIEST method which is: incorporate this analysis in your PHA. The requirements for evaluation methodology allow for a semi-quantitative technique for risk-ranking which is what you are already doing if you are using traditional IIAR PHA What-If / Checklist methodology.

To that end, I’ve converted every requirement in IIAR 9-2020 to a Checklist and included that checklist in with the existing PHA checklists for IIAR 2 compliance.

So, the next time you revalidate your PHA, if you use the new PHA templates you will automatically be performing this new required IIAR 9 evaluation. I’ve updated the PHA report template, the PHA worksheets, the PSI RAGAGEP letter templates, and the MI-EL1 to reflect these changes as well. Check the template change-log for details. 

Service Technician & PSM Coordinator Bulletin: COVID-19 and YOU!

I know you’re busy and probably a little concerned about this COVID-19 outbreak. It’s important that you understand a few things about it because YOU are on the frontlines of our economy while this is unfolding AND its recovery once this event passes. YOU keep the foods, beverages, and medicines our society relies on SAFE.

Because your time is valuable, I’ve assembled what you need to know in less than a five-minute read:

 

What it is:

A virus that is spread through close contact with infected persons or contaminated surfaces, and through the air by respiratory droplets produced during coughs and sneezes. As with seasonal “colds,” the most severe impacts seem to be to those with compromised immune systems, damaged lungs, and the elderly.

 

What are the symptoms:

Symptoms usually appear 2-14 days after exposure.

  • Fever
  • Cough (usually dry)
  • Shortness of breath.

 

Your action to take:

The CDC (Center for Disease Control) has issued guidance and they continue to update their guidance daily.

To protect yourself against infection, the World Health Organization (WHO) recommends:

  • Washing your hands regularly with soap and water for 20 seconds, and using alcohol-based sanitizer
  • Maintaining distance of at least 2 meters (6 feet) between yourself and anyone who is coughing or sneezing
  • Avoiding touching your eyes, nose and mouth
  • Seeking medical care immediately if you are showing symptoms (though some facilities ask that you call your medical facility for instructions before coming to their office).

 

When should I seek medical attention?

If you develop emergency warning signs for COVID-19 get medical attention immediately. Emergency warning signs include:

  • Difficulty breathing or shortness of breath
  • Persistent pain or pressure in the chest
  • New confusion or inability to arouse
  • Bluish lips or face

 

NOTE: This is NOT meant to be a comprehensive overview. It’s meant to provide clear, simple, actionable information for people that have other things to do with their lives. More information can be found at the CDC  and WHO.

You can download this information in a one-page PDF for posting.

032120 Update: OSHA has published OSHA 3990, Guidance on Preparing Workplaces for COVID-19.

CSB’s NEW Chemical Incident Reporting Rule is FINAL

“U.S. Chemical Safety Board and Hazard Investigation Board (CSB) has approved a final rule on accidental release reporting. The CSB has posted a prepublication version of the final rule… The official version should be published early next week in the Federal Register.

The rule requires prompt reports to the CSB from owners or operators of facilities that experience an accidental release of a regulated substance or extremely hazardous that results in a death, serious injury or substantial property damage. The CSB anticipates that these reports will provide the agency with key information important to the CSB in making prompt deployment decisions…

The rule is required by the CSB’s enabling legislation but was not issued during the first 20 years of CSB operations. Last year, a court ordered the CSB to finalize a rule within a year. “

What it means: If the incident resulted in Death, Serious Injury or Substantial Property Damage ($1kk or more) then you have to report the incident to the CSB (via phone 202- 261-7600 or email report@csb.gov) within 30 minutes. The report must include:

1604.4 Information required in an accidental release report submitted to the CSB
1604.4 The report required under §1604.3(c) must include the following information regarding an accidental release as applicable:
1604.4(a) The name of, and contact information for, the owner/operator;
1604.4(b) The name of, and contact information for, the person making the report;
1604.4(c) The location information and facility identifier;
1604.4(d) The approximate time of the accidental release;
1604.4(e) A brief description of the accidental release;
1604.4(f) An indication whether one or more of the following has occurred: (1) fire; (2) explosion; (3) death; (4) serious injury; or (5) property damage.
1604.4(g) The name of the material(s) involved in the accidental release, the Chemical Abstract Service (CAS) number(s), or other appropriate identifiers;
1604.4(h) If known, the amount of the release;
1604.4(i) If known, the number of fatalities;
1604.4(j) If known, the number of serious injuries;
1604.4(k) Estimated property damage at or outside the stationary source;
1604.4(l) Whether the accidental release has resulted in an evacuation order impacting members of the general public and others, and, if known:
1604.4(l)(1) the number of persons evacuated;
1604.4(l)(2) approximate radius of the evacuation zone;
1604.4(l)(3) the type of person subject to the evacuation order (i.e., employees, members of the general public, or both).

The good news is that if you have to report the incident to the NRC then you can skip reporting all the above data and simply report the NRC case number you’re given during the NRC call.

This new requirement takes effect 30 days from the posting in the Federal Register so ACT NOW. It’s important that you update your program because there are enforcement penalties associated with not following this new rule…

1604.5(b) Violation of this part is subject to enforcement pursuant to the authorities of 42 U.S.C. 7413 and 42 U.S.C. 7414, which may include
1604.5(b)(1) Administrative penalties;
1604.5(b)(2) Civil action; or
1604.5(b)(3) Criminal action.

 

What should I do? 

If you use the template program, the hard work has already been done FOR YOU. Just open up the template directory on Google Drive and follow these steps for your program:

  • In \Reference\ add new directory \Reference\CSB\ and place “CSB Reporting Accidental Releases – prepublicationcopy 020320.pdf” in it. You can get it from the templates directory or from the EPA link.
  • In \Reference\CFR\ add “40CFR1604 – Hazardous substances Reporting and recordkeeping requirements.doc” from the templates directory.
  • Update the Incident Investigation element Written Plan to the 020720 version from the templates directory.
  • Update the \01 – EPA RMP\ Definitions file to the 020720 version from the templates directory.
  • Train all Responsible Persons and affected management on the new policies.
  • Document the changes in your DOC-Cert in accordance with the Implementation Policy: Managing Procedure / Document Changes found in the MOC/PSSR element Written Plan.

Note: If you have instructions for Agency Notifications somewhere outside your Incident Investigation plan, you’ll need to update them to include the CSB contact information there too. Feel free to use the text in the Incident Investigation element Written Plan, Implementation Policy: Agency Notifications.

 

A little help can go a long way!

Sometimes a little extra can go a long way to improve the effectiveness of your compliance efforts. I would like to show you how we used two simple, inexpensive laminated cards to improve the effectiveness of our APR inspections and Incident reporting / reactions.

APR Card

First, the APR issue:1910.134 has some requirements on inspections, cleaning, fit-check, etc. We require our service technicians to wear APR’s during Line-Opening. I created a small laminated card (about 5″x8″) that fits in their APR bag. With the included permanent marker, we can track the APR inspections for a year. The card also provides convenient information on the “Fit-Check” and “Monthly Inspection” procedures. Here’s the WORD document if you want to modify it for your use.

 

Leak Investigation / Incident Reporting

Our technicians are often called to look into reported ammonia odors. We’ve established a policy on doing this in compliance with 1910.119(n) concerning “handling small releases.” We also conduct Incident Investigations to meet the requirements of 1910.119(m). Again, I created a small laminated card (about 5″x8″) that fits in their APR bag.  It provides a quick-reference to the investigation procedure, as well as reminders of the information we’ll be asking them for. Contact numbers for company safety/compliance resources are also included. Here’s the WORD document if you want to modify it for your use.

 

Little items like this can reinforce your training. The easier “being compliant” is, the more likely it is to happen in the field! 

p.s. The Word documents are meant to be printed double-sided. I use 32# paper, trim, then seal with 5mil clear laminating envelopes. 

Why use the “buddy system” during Line Openings?

Most LEO (Line & Equipment Opening) policy a.k.a. “Line Break” policies require a second person away from the work but in the immediate area. It is reasonable to ask why the procedure demands this.

Put as simply as possible:

  1. PSM/RMP and IIAR 7 require procedures for Line & Equipment Openings. (or IIAR 7 alone if you have under 10k pounds)
  2. The PHA asks questions that identify hazards which result in administrative controls aka procedures. Those procedures will have to control the unique hazards identified in the PHA.
  3. RAGAGEP for procedures (such as IIAR 7) require the buddy system be addressed in Line & Equipment Opening procedures.
  4. HazMat & Firefighting history show it is useful.
  5. Human Nature tells us that people tend to hold each other accountable.

 

Let’s work through this step-by-step

1. PSM/RMP requires us to have a procedure:

1910.119(f)(4) The employer shall develop and implement safe work practices to provide for the control of hazards during operations such as lockout/tagout; confined space entry; opening process equipment or piping; and control over entrance into a facility by maintenance, contractor, laboratory, or other support personnel. These safe work practices shall apply to employees and contractor employees.

Put another way: We have to develop a written procedure on Line & Equipment Openings which everyone must follow.

 

2. Hazards identified during a PHA are often controlled with Administrative controls, such as SOPs. SOP content therefore must address the hazards identified in the PHA. Some examples:

…the Ammonia exposure increases while the operator is using an APR/SCBA? (II.8) This is what makes us mandate the use of a personal NH3 detector during line openings and leak investigations.

…there is inadequate isolation prior to maintenance? (HF.3) …the Ammonia pump-out for a length of piping or for a piece of equipment is incomplete? (PO.1) This is why SOPs include a pressure check to confirm pumpdown. This is also why the LEO procedure (and permit) require a written SOP & permit to check the effectiveness of the procedure.

…an injured worker is unable to summon assistance? (HF.56) This (among other reasons) is why we require a Buddy System. The LEO policy, in the General Precautions section, states “A buddy-system is used for all LEO procedures. The second person must be trained to initiate emergency action and must be stationed close enough to observe the activity but far enough away to ensure that they would not be endangered by an accidental release.”

 

3. The RAGAGEP for procedures IIAR 7-2019 has this requirement:

4.4.2 Buddy System. Operating procedures shall indicate when the buddy system shall be practiced in performing work on the ammonia refrigeration system

A4.4.2-The buddy system should be practiced for operations where there is the potential that ammonia could be released, for example, operations which involve opening ammonia refrigeration equipment or piping. The buddy system should also be practiced during emergency operations involving ammonia releases.

 

4. HazMat & Firefighting history: Hazardous Materials teams and Firefighters have long used a 2-person team for increased safety. To some degree, this is enshrined in OSHA rules in 1910.134(g)(3)…

1910.134(g)(3) Procedures for IDLH atmospheres. For all IDLH atmospheres, the employer shall ensure that:

1910.134(g)(3)(i) One employee or, when needed, more than one employee is located outside the IDLH atmosphere;

1910.134(g)(3)(ii) Visual, voice, or signal line communication is maintained between the employee(s) in the IDLH atmosphere and the employee(s) located outside the IDLH atmosphere;

While we don’t INTEND to work inside a IDLH atmosphere during a LEO procedure, the possibility certainly exists if something goes wrong. The “buddy system” allows the person performing the LEO to focus on the work while the second person remains in the area situationally aware and ready to respond in the event that the situation changes or something goes wrong.

 

5. Human Nature: The LEO policy is written around accountability. The policy requires that we demonstrate to a second person that we’ve followed the policy and adequately prepared for the work before the LEO occurs.  The “buddy system” tends to keep the actions “in-line” during the actual work.

Note: While it’s certainly possible  – from a regulatory view – that you could have certain specific LEO procedures that did not require a “buddy,” you would have to be able to document how you managed to address all of the issues outlined above without the second person.

Thanks to Bryan Haywood of SaftEng.net and Gary Smith of ASTI (Ammonia Safety Training Institute) for their time and thoughts in helping review this post.

« Older posts Newer posts »