Author: Brian D. Chapin (Page 2 of 10)

Known as the "PSM Evangelist" and the "Jon Taffer of Ammonia PSM," I have taught over 1,000 people how to implement PSM/RMP in their Ammonia processes. It is my honor and privilege to work with the finest minds in the industry. I fuse Six Sigma / Lean / Kaizen philosophy with PSM/RMP to minimize compliance burdens and maximize the safety & efficiency gains of a properly implemented program.

Here are some highlights:

- Designed, Built and Continuously Improved OSHA Process Safety Management, EPA Risk Management and Process Hazard Analysis Programs for Industrial Ammonia Refrigeration systems all over the country.

- Comprehensively audited OSHA Process Safety Management, EPA Risk Management in facilities throughout the United States in facilities of all sizes from 10,000 pounds to over 300,000. Processes ranged from Ammonia Refrigeration to N02 reduction and Synthetic Rubber production.

- Lead Author and Project Manager for the book “Implementing Process Safety Management for Ammonia Refrigeration” used as the textbook for teaching PSM for over 100 companies a year.

- Through FOIA, I have read the citations, 1B's and narratives to every PSM citation issued by OSHA from 2008-2013.

- Managed Refrigeration Projects including Expansions, System Optimization and Capital Projects.

- Acted as HazMat Incident Commander and Team Member.

- Skilled in Incident Investigation and Root Cause Analysis.

- Background in Six Sigma, Lean and Kaizen implementation in manufacturing.

- Familiar with ISO 9000 & SQF programs.

- Organized CMMS (Computerized Maintenance Management System) Implementation.

- P&ID creation and modification.

- Completed many projects in Energy Conservation and System Optimization of Refrigeration Systems.

A little help can go a long way!

Sometimes a little extra can go a long way to improve the effectiveness of your compliance efforts. I would like to show you how we used two simple, inexpensive laminated cards to improve the effectiveness of our APR inspections and Incident reporting / reactions.

APR Card

First, the APR issue:1910.134 has some requirements on inspections, cleaning, fit-check, etc. We require our service technicians to wear APR’s during Line-Opening. I created a small laminated card (about 5″x8″) that fits in their APR bag. With the included permanent marker, we can track the APR inspections for a year. The card also provides convenient information on the “Fit-Check” and “Monthly Inspection” procedures. Here’s the WORD document if you want to modify it for your use.

 

Leak Investigation / Incident Reporting

Our technicians are often called to look into reported ammonia odors. We’ve established a policy on doing this in compliance with 1910.119(n) concerning “handling small releases.” We also conduct Incident Investigations to meet the requirements of 1910.119(m). Again, I created a small laminated card (about 5″x8″) that fits in their APR bag.  It provides a quick-reference to the investigation procedure, as well as reminders of the information we’ll be asking them for. Contact numbers for company safety/compliance resources are also included. Here’s the WORD document if you want to modify it for your use.

 

Little items like this can reinforce your training. The easier “being compliant” is, the more likely it is to happen in the field! 

p.s. The Word documents are meant to be printed double-sided. I use 32# paper, trim, then seal with 5mil clear laminating envelopes. 

Why use the “buddy system” during Line Openings?

Most LEO (Line & Equipment Opening) policy a.k.a. “Line Break” policies require a second person away from the work but in the immediate area. It is reasonable to ask why the procedure demands this.

Put as simply as possible:

  1. PSM/RMP and IIAR 7 require procedures for Line & Equipment Openings. (or IIAR 7 alone if you have under 10k pounds)
  2. The PHA asks questions that identify hazards which result in administrative controls aka procedures. Those procedures will have to control the unique hazards identified in the PHA.
  3. RAGAGEP for procedures (such as IIAR 7) require the buddy system be addressed in Line & Equipment Opening procedures.
  4. HazMat & Firefighting history show it is useful.
  5. Human Nature tells us that people tend to hold each other accountable.

 

Let’s work through this step-by-step

1. PSM/RMP requires us to have a procedure:

1910.119(f)(4) The employer shall develop and implement safe work practices to provide for the control of hazards during operations such as lockout/tagout; confined space entry; opening process equipment or piping; and control over entrance into a facility by maintenance, contractor, laboratory, or other support personnel. These safe work practices shall apply to employees and contractor employees.

Put another way: We have to develop a written procedure on Line & Equipment Openings which everyone must follow.

 

2. Hazards identified during a PHA are often controlled with Administrative controls, such as SOPs. SOP content therefore must address the hazards identified in the PHA. Some examples:

…the Ammonia exposure increases while the operator is using an APR/SCBA? (II.8) This is what makes us mandate the use of a personal NH3 detector during line openings and leak investigations.

…there is inadequate isolation prior to maintenance? (HF.3) …the Ammonia pump-out for a length of piping or for a piece of equipment is incomplete? (PO.1) This is why SOPs include a pressure check to confirm pumpdown. This is also why the LEO procedure (and permit) require a written SOP & permit to check the effectiveness of the procedure.

…an injured worker is unable to summon assistance? (HF.56) This (among other reasons) is why we require a Buddy System. The LEO policy, in the General Precautions section, states “A buddy-system is used for all LEO procedures. The second person must be trained to initiate emergency action and must be stationed close enough to observe the activity but far enough away to ensure that they would not be endangered by an accidental release.”

 

3. The RAGAGEP for procedures IIAR 7-2019 has this requirement:

4.4.2 Buddy System. Operating procedures shall indicate when the buddy system shall be practiced in performing work on the ammonia refrigeration system

A4.4.2-The buddy system should be practiced for operations where there is the potential that ammonia could be released, for example, operations which involve opening ammonia refrigeration equipment or piping. The buddy system should also be practiced during emergency operations involving ammonia releases.

 

4. HazMat & Firefighting history: Hazardous Materials teams and Firefighters have long used a 2-person team for increased safety. To some degree, this is enshrined in OSHA rules in 1910.134(g)(3)…

1910.134(g)(3) Procedures for IDLH atmospheres. For all IDLH atmospheres, the employer shall ensure that:

1910.134(g)(3)(i) One employee or, when needed, more than one employee is located outside the IDLH atmosphere;

1910.134(g)(3)(ii) Visual, voice, or signal line communication is maintained between the employee(s) in the IDLH atmosphere and the employee(s) located outside the IDLH atmosphere;

While we don’t INTEND to work inside a IDLH atmosphere during a LEO procedure, the possibility certainly exists if something goes wrong. The “buddy system” allows the person performing the LEO to focus on the work while the second person remains in the area situationally aware and ready to respond in the event that the situation changes or something goes wrong.

 

5. Human Nature: The LEO policy is written around accountability. The policy requires that we demonstrate to a second person that we’ve followed the policy and adequately prepared for the work before the LEO occurs.  The “buddy system” tends to keep the actions “in-line” during the actual work.

Note: While it’s certainly possible  – from a regulatory view – that you could have certain specific LEO procedures that did not require a “buddy,” you would have to be able to document how you managed to address all of the issues outlined above without the second person.

Thanks to Bryan Haywood of SaftEng.net and Gary Smith of ASTI (Ammonia Safety Training Institute) for their time and thoughts in helping review this post.

OSHA fines getting more expensive again!

The Obama administration signed the Federal Civil Penalties Inflation Adjustment Act Improvements Act of 2015 which requires OSHA to adjust their fine amounts for inflation. 2020’s numbers are in: OSHA will adjust the fines by the  Consumer Price Index cost-of-living adjustment multiplier of 1.01764 which turns into a $230 increase for Serious and a $2300 increase for Willful / Repeat. The table below shows the new penalty amounts.

 

 

Memo File:  2020 OSHA Annual Adjustments

Trump EPA goes LIVE with new RMP rule: Is this finally the end of the saga?

The story so far…

Dec 2016: Outgoing Obama EPA releases changes to the RMP rule on the way out the door.

Apr 2017: Incoming Trump EPA puts the RMP rule changes on hold.

Jun 2017: Trump EPA further delays the RMP rule changes.

May 2018: Trump EPA proposes new RMP rule changes, reversing Obama changes.

Aug 2018: DC District Court reverses Trump Rule and re-instates Obama rule essentially making it the existing rule with compliance dates in the past. Trump EPA is basically told that it can change the rules, but it needs to follow different procedures to do that. Trump admin appeals and the rule changes are put on hold.

Sep 2018: Trump admin loses appeals. Obama RMP rule changes are officially LIVE. Trump EPA announces that they will follow the different procedures and change the rule the right way. (Not-so-secretly, the entire EPA is told NOT to enforce the new rule, but out of an abundance of caution, most RMP adherents implement the changes anyway. After all, it IS the law.)

Dec 2019: Trump EPA officially posts the new rule and places it in the CFR making it LIVE on 12/19/19. (See links at the end of the post)

 

So, where do we stand now?

Ok, we’ve got a new RMP rule. It appears to have gone through the correct rulemaking process. It’s been published in the Federal Register making it the law of the land.

 

So, what do we do now?

Well, let’s be honest; the Trump administration IS GOING TO GET SUED over this. What happens then? Who knows!? If you follow the courts in modern America, you know there is very little that can be accurately forecasted.

What we do know is that we have a new rule. The new rule appears to have been done correctly with sound documentation as to the reasoning for the changes. In my opinion, the new rule will LIKELY hold up in court. Even if it doesn’t, it is highly unlikely the EPA could get away with fining / citing people for not following a court-reinstated rule under such a cloud of confusion.

In any case, the new rule is easier to follow and makes more sense than the Obama EPA rule changes did. It reverts the majority of the RMP rule to match the PSM rule where they SHARE jurisdiction. The only substantive changes are to the EPA-specific areas where the EPA alone holds jurisdiction.

 

Ok, so how do I comply with this new rule?

If you do use our template system, I’ve got some good news for you! This is where using a set of open-sourced, professionally curated templates really shines. ALMOST ALL THE WORK has been done FOR YOU!

  • To improve your understanding of the new rule, read how we changed the program to meet the new requirements. This will help you to train your colleagues on them.
  • Replace existing copies of the affected Written Plans / Forms, taking a moment to look at the changes between the older versions and the new ones.
    1. Implement new EAP-C form.
    2. Modify the MI-EL1 EAP/ERP line to reflect the new text.
  • Train all Responsible Persons and affected management on the new policies.

Note: Estimated time for the above is about 2-4 hours depend on how well you know your PSM/RMP program.

 

On the other hand, If you don’t use our template system, you’re going to have to re-create the work I’ve already done:

  • Skip to the end of this article to get the links to the new information.
  • Read the 83-page Federal Register notice and make a series of notes about the new requirements. You can probably skip the 109 footnotes for now.
  • Compare those new requirements to the version of the RMP rule your program is CURRENLY written to comply with; whether that’s the pre-Obama, Obama, or Trump proposed version.
  • Starting at the beginning of your program, read through each of your Element Written Plans and see what changes have to be made. Refer to your notes from the first step. (You may wish to read how we changed our program to meet the new requirements)
  • Update / alter your program to meet these new requirements.
  • Train on these new changes

Note: Estimated time for the above is about 40-80 hours depend on how well you know your PSM/RMP program and the EPA RMP rule.

 

Template Program changes in detail

Please note, where not specifically shown below all affected Element Written Plans had their CFR section updated to the current 12/19/19 CFR.

Element What Changed Changes to Program Templates
01 – RMP
  1. A few definitions were deleted
  2. Some compliance dates and RMP references were changed
  3. Various Program 2 Changes
  4. Public meetings changes
  5. RMP Filing changes regarding 3rd party compliance audits, public meetings, etc.
  6. Removed significant amounts of publicly available information
  1. As our definition file isn’t limited to EPA sources, no changes were made to the template program documents.
  2. Previously there were sections about the Obama-era law that had a 2021 date tag – these sections were either deleted (because they were removed) or the date tag was removed.
  3. The element written plans are designed around Program 3, so no changes were made in them however all relevant CFR sections were updated.
  4. Updated the Element Written Plan to address these issues
  5. Updated the CFR to reflect the changes.
  6. Updated the Element Written Plan to address these issues
02 – EP N/A None
03 – PSI
  1. Removed the explicit requirement to keep PSI up to date.
  1. While we updated the CFR text, this is sort of implicit in the MOC/PSSR program and the very nature of PSM, so no changes made to the Element Written Plan.
04 – PHA
  1. Removed a nebulous requirement to look for “any other potential failure scenarios”
  2. Removed a section on alternative risk management for chemical / petro plants.
  1. While we updated the CFR text, this is sort of implicit in the idea of a PHA, so no changes were made in the Element Written Plan.
  2. These changes did not cover the NH3 refrigeration industry, so no changes were needed in the Element Written Plan.
  3. Since the explicit PSI “up to date” requirement was removed from the PSI section, it was removed from the PSI checklist in the PHA What-If checklists.
05 – SOP N/A None
06 – OT
  1. Removed an explicit requirement that “supervisors with process operational responsibilities” were covered under this program.
  1. We believe that operators under this element are defined by their function not their title / job position, so no changes were needed in the Element Written Plan.
07 – CQ N/A None
08 – MI No changes to RMP requirements
  1. The MI-EL1 section covering recurring PSM tasks in EAP/ERP was updated to remove the 2021 date codes. While the 10yr Field Exercise frequency is now just a suggestion (rather than a mandate) we’ve kept it in as a good practice.
09 – HW N/A None
10 – MOC / PSSR No changes to RMP requirements
  1. The procedural section “Implementation Policy: Managing Equipment / Facility Changes and using form MOC-1” includes a chart on possible changes to RMP-required information based on an MOC. The reference to “public information” has been removed from this chart.
11 – II
  1. Removed explicit requirements for incident location, time, all relevant facts, chronological order, amount released, number of injuries, etc.
  2. Removed a requirement that Incident Investigations be completed within a year
  1. While we removed these requirements from the CFR section, we believe they are still important for Incident Investigations and they’re already required by relevant RAGAGEP, so no changes were made to the Element Written Plan, the investigation instructions, or the Form-IIR Incident Investigation form.
  2. While we can’t imagine this wouldn’t occur naturally in a functioning process safety program, we removed the requirement. The program – as written – already suggests interim reports when investigations are lagging.
12 – EPR
  1. Lots of changes here: Modified information sharing requirements with responders, modified frequency of field exercises, modified scope of field and tabletop exercises, documentation requirements, compliance dates, etc.
  1. These changes were all incorporated in the Element Written Plan.
  2. To improve program performance, a new form was created “EAP-C Local Authority Coordination Record.” This form was also included in the Element Written Plan.
13 – CA
  1. Removed requirements for 3rd party audits
  1. These changes were all incorporated in the Element Written Plan.
14 – TS
  1. Modified text in the “CBI” section to reflect new wording in the updated rule.
  1. While it’s been changed in the CFR text, it requires no change to the Element Written Plans.

Item-by-Item changes:

  • Reference\EPA Reference\ has been updated with a PDF of the Register Notice.
  • Reference\CFR – Text of Federal Rules\ has been updated with a complete and formatted CFR reflecting the new changes.
  • The various element affected template directories have been updated with Element Written Plans that incorporate the new CFR text AND modified policies to comply with the rule changes
    • 01 – EPA RMP
      • Element Written Plan – REPLACE
    • 03 – Process Safety Information
      • Element Written Plan – REPLACE
    • 04 – Process Hazard Analysis
      • Element Written Plan – REPLACE
      • PHA Worksheet Template – REPLACE
    • 06 – Operator Training
      • Element Written Plan – REPLACE
    • 08 – Mechanical Integrity
      • MI-EL1 Form updated. You may just wish to modify the EAP/ERP line to reflect the new text rather than re-create the form.
    • 10 – Management of Change and PSSR
      • Element Written Plan – REPLACE
    • 11 – Incident Investigation
      • Element Written Plan – REPLACE
    • 12 – Emergency Planning and Response
      • Element Written Plan – REPLACE
      • NEW Form EAP-C – Implement
    • 13 – Compliance Audits
      • Element Written Plan – REPLACE
      • Optional Combined PSM RMP Compliance Self-Audit Checklist – REPLACE
    • 14 – Trade Secrets
      • Element Written Plan – REPLACE

 

EPA links for new information:

  • Updated CFR (aka “law”) from eCFR: link (37 Pages)
  • Federal Register Notice including reasoning for changes: link (83 Pages)

New Year, “New” SOP Format

The spirit of Christmas may be behind us, but the spirit of Continuous Improvement never leaves us alone. (for better or worse, lol)

After months of minor changes and revisions off-line, the 2020 SOP templates have been released. Please note: These are IMPROVEMENTS, not compliance or safety-critical changes. As such, there is no need to go back and change your existing SOPs. We would, however, suggest you use these new formats as you implement new SOPs. Of course, it’s possible, you may want to take advantage of some of the features of these new SOP templates, and you’re welcome to convert to them if you have the time.

Changes to ALL SOP Templates:

  1. Moved “Covered Equipment” to “Objective” section which eliminates Document Info section.
  2. Moved “Related Documents” to “Objective” which eliminates Related Documents section.
  3. Removed “SOP Objective” from first section as the objective is repetitive and explained clearly in the Written Plan. (It’s the first text box of the SOP so it’s fairly obvious what the function is!)
  4. Made Safety Warning triangle smaller and made the warning RED. This change (among others) frees up a bit of room for the Safety, Health, Environmental and Equipment Considerations section
  5. Moved the Operator Requirements concerning authorization to the top of the Safety, Health, Environmental and Equipment Considerations section thus eliminating the Operator Requirements section. Also provided a callout to the operator to check their OT1 to ensure they’re qualified to perform the procedure.
  6. Modified the Operating Phase flowchart section layout to take up less space.
  7. Minimized the left-hand column which shows what “Section” you are in to 1” width to take up minimal space. Centered the section text.
  8. Placed Headings between sections. This required splitting up the various Operating Phase / Procedural sections but makes navigation much easier if being used in WORD or PDF format.
  9. Added complementary color to enlarged text “body” sections of Operating Phase / Procedural Sections.
  10. Valve / Component List given a header. Sub-header appropriately colored.

Why did we make those format changes?

  1. Those changes yield a slightly shorter SOP format (average 1 page loss per SOP)
  2. These are collections of various suggestions we’ve received over the past year from end-users.
  3. The resulting SOPs are much more visually appealing, especially on tablets.
  4. The resulting SOPs are much easier to navigate on tablets, which alot of users are implementing for their technicians.

 

Additional changes were made to some other SOP templates:

  1. HPRTSR: Updated the System Charging procedural section based on user feedback.
  2. HPR: Added a Cylinder Charging procedural section for those users that want that option.
  3. LEO: Traditional Permit LEO was simplified and now only has “Existing SOP,” “With Drain Valve,” and “Without Drain Valve” sections. The previous 4 possibilities was confusing to some and this one seems to be easier to understand.

Direct Replacement, Replacement in Kind and Management of Change

Of all the PSM/RMP requirements, the Management of Change element is the most consistently problematic. Most of the difficulty is in answering two questions:

  • The compliance question: Does the change you considering count as a “change” per the PSM/RMP rule.
  • The safety question: Does the change you are considering have the potential to affect the safety of the process?

Note, it is quite possible that you answer NO to the first question and YES to the second question.

 

The text of the Rule

1910.119(l)(1) – The employer shall establish and implement written procedures to manage changes (except for “replacements in kind”) to process chemicals, technology, equipment, and procedures; and, changes to facilities that affect a covered process.

From a compliance perspective, how broadly you interpret the “…changes to facilities that affect a covered process” portion dictates how many changes will be subject to this element.

Of course, there’s also a little window that allows you to avoid the MOC element if you classify the change as a “replacement in kind.” The rule provides a fairly useless definition of Replacement in Kind:

1910.119(b) …Replacement in kind means a replacement which satisfies the design specification.

The “replacement in kind” exception is routinely abused to avoid MOC. To understand this element better, let’s consider a few scenarios: Replacing a Valve, replacing a Motor, replacing an Ammonia Detector, and replacing a Condenser.

 

Example: Replacing a Valve

In this example, we’re replacing a valve with the same model, size, etc. Is this a change? Some people would call this a Replacement in Kind, but I would not. I would call this a Direct Replacement. It’s not kind of like the valve we’re replacing, it’s exactly like it. Such a change is outside the scope of the MOC element entirely.

What if we were replacing the valve with a different brand or model? Then we don’t know if it is a Replacement in Kind until we ask enough questions to assure ourselves that it satisfies the design specification. Some questions we might ask are:

  • Is it made of the same materials?
  • Does it have the same flow ratings / capacity?
  • Does it have the same mode of operation in manual and automatic?
  • Does it have the same Mechanical Integrity requirements?
  • Does it affect the PHA section that this equipment belongs to?

It’s quite possible that you answer enough questions to assure yourself that the replacement valve satisfies the design specification making it a Replacement in Kind. While this means it is outside of the MOC element for compliance purposes, we’d still recommend you document the rationale you used to determine that it meets these design specifications. You could even take this documentation one step further and declare that in the future all replacements of Brand A Model X valve with Brand B Model Y valve can be considered a Direct Replacement in this application.

 

 

Example: Replacing a Motor

A motor might be considered by some (incorrectly) to be outside of the MOC element because it doesn’t (usually) contain ammonia, but this is short-sighted. Remember, the MOC element is about Changes to…equipment…that affect a covered process. A motor for equipment that is part of your covered process would certainly fall within the scope of the element for consideration.

Ideally, we’re replacing the motor with the exact some one – a Direct Replacement that would place it outside the MOC element. But, if we are replacing it with another motor, we will be looking to prove that it satisfies the design specification so we can consider it a Replacement in Kind. Again, we need to ask questions:

  • Does it have the same electrical requirements (phase, voltage, etc.)
  • Does it have the same frame size?
  • Does it have the same RPM, duty rating, capacity, etc?
  • Does it affect the PHA section that this equipment belongs to?

Just like earlier in our valve example, it’s quite possible that you answer enough questions to assure yourself that the replacement motor satisfies the design specification making it a Replacement in Kind. While this means it is outside of the MOC element for compliance purposes, we’d still recommend you document the rationale you used to determine that it meets these design specifications. You could even take this documentation one step further and declare that in the future all replacements of Brand A Model X motor with Brand B Model Y motor can be considered a Direct Replacement in this application.

 

 

Example: Replacing an Ammonia Detector

Like earlier, with the motor example, a change to an ammonia detector might be considered by some (incorrectly) to be outside of the MOC element because it doesn’t (usually) contain ammonia, but this is short-sighted. Remember, the MOC element is about Changes to…equipment…that affect a covered process. You definitely consider these detectors as safeguards in your PHA, so we need to exercise some caution on this change.

If we’re replacing the detector with the exact same one, then it’s a Direct Replacement. If we’re replacing it with a different detector, we need to assure that it satisfies the design specification so we can consider it a Replacement in Kind. Again, we need to ask questions:

  • Does it have the same electrical requirements?
  • Does it have the same output signal / alarm outputs?
  • Does it have the same sensitivity?
  • Does it have the same Mechanical Integrity requirements? The same calibration equipment, schedule and calibration procedure?
  • Does it affect the PHA section that this equipment belongs to?

In my experience, unless you are dealing with a Direct Replacement, no detector meets the requirements for a Replacement in Kind because they almost all fail the last question on calibration equipment, schedule and procedure. That means such a change would require the implementation of a Management of Change procedure.

Here’s where we can get a little clever. The PSM/RMP rules require that we “establish and implement written procedures to manage changes” but they don’t require that we use the same procedure for every change! If we sit down and think through all we need to do to successfully change from Brand A Model X NH3 detector to Brand B Model Y NH3 detector, we could establish a standard procedure for doing so. That means that in a facility with, say, 45 detectors that you are changing over a period of time, you have a Single MOC (to establish the new procedure) and then simply implement the new NH3 Detector Change SOP 45 times as the changes occur.

 

 

Example: Replacing a Condenser

In this example we’re replacing a brand A evaporative condenser with 500 tons of capacity with a brand B evaporative condenser with 500 tons of capacity. Note: this would work the same with if you were replacing it with a different model of brand A as well. Also, if you were replacing a condenser with an exact duplicate, then theoretically you may be able to get by with a PSSR, but that assumes you don’t need any non-standard operating modes during the change-out.

First question: Is it a change to equipment which satisfies the design specification? Answer: Well, I don’t know because there is a lot that goes into that determination. But every part of a condenser changeout has the potential to affect the safety of your system. Questions you should ask include:

  • Does it have the same electrical requirements (phase, voltage, amp draw, etc.)
  • Is it have the same size and weight?
  • Is it made of the same materials?
  • Does it have the same flow ratings / capacity?
  • Does it have the same mode of operation in manual and automatic?
  • Does it have the same Mechanical Integrity requirements?
  • Does the P&ID need to be updated?
  • Does the SOP need to be updated?
  • Does it affect the PHA section that this equipment belongs to?
  • …and the list goes on.

While it is technically possible that you could ask these (and 100 other) questions concerning a condenser replacement in such detail that you ensure it satisfies the design specification, you are going to want to document all that work. I’ve personally never seen it happen unless it was the same make and model. In our opinion, the best way to document all that work is by following the Management of Change procedure.

 

Closing Thoughts

Management of Change is a difficult element. But by working this element, you can find and address hazards before they are introduced to your process. There’s very little that can be said about it better than this advice from the Petroleum NEP:

OSHA’s MOC requirement is prospective.

The standard requires that an MOC procedure be completed, regardless of whether any safety and health impacts will actually be realized by the change. The intent is, in part, to have the employer analyze any potential safety and health impacts of a change prior to its implementation. Even if the employer rightly concludes there would be no safety and health impacts related to a change, 1910.119(l)(1) still requires the employer to conduct the MOC procedure.

PSM is a Thief!

The view that PSM is a time-sink.

A common push-back from facilities that are covered under the OSHA PSM and EPA RMP regulations is the sheer amount of resources these programs require to successfully design, implement, and maintain.

One phrase, seared into my memory, is from a frustrated and over-burdened maintenance manager: “PSM is a thief!”

He was referring to the fact that he had to task high-performing, highly trained and highly compensated personnel to perform Process Safety tasks. Time spent on Process Safety is obviously time that isn’t spent elsewhere.

My counterpoint at the time was “Safety isn’t earned – it is rented. And the rent is due every damned day

After an experience I had last week, I think there’s a better way to respond. I’d like to share my new response with you, but first let’s talk about the experience that made me see a new way of approaching this issue.

 

The experience

During the recent RETA conference the guest speaker was Jóse Matta. Jóse suffered ammonia burns over 40+ percent of his body when a condenser failed in an overpressure event. The event involved a portable ammonia refrigeration system. Before transport the system is drained of ammonia. In this incident, the driver placed a cap on the relief valve outlet due to DOT concerns. However, once the unit arrived onsite, the capped relief valve wasn’t noticed. Eventually this led to an overpressure event once the unit was charged and started.

Jose Matta barely survived his exposure. He nearly died in the hospital. His wife was brought into the burn unit to say her final goodbyes to her husband – the father of their children. When he was lucky enough to survive, he had to endure multiple surgeries. He no longer has a sense of smell and can barely taste food. He no longer has the ability to sweat and has to constantly monitor his condition when it’s hot out to avoid heat-stress or heat-stroke.

 

What does Jose’s experience have to do with “PSM as a thief?”

Post-incident, several failures of the PSM program were noted:

  • Pre-Startup Safety Review failed to identify the capped relief.
  • SOPs and Training on startup either weren’t adequate to control the hazards, or weren’t followed.
  • Setup time and tight scheduling, location of safety showers, weren’t adequately addressed in the PHA.
  • The MI program didn’t ensure that the high-discharge-pressure interlock worked.
  • The technician and contractors at the site weren’t familiar enough to know there was a safety shower located in a nearby building.
  • The EAP didn’t provide adequate information to the facility or responders, leading to them delaying effective treatment.
  • There was no command system in place. Nobody called 911. Nobody took charge. Nobody met the responders when they arrived to explain what was going on.

If the Process Safety items above were properly in place, the incident either wouldn’t have happened, or the outcome would have been significantly better for Jóse.

You see, when I pushed back from the “PSM is a Thief” argument before, I was wrong. I should have agreed with that statement.

 

PSM *is* a thief. Yes, it takes resources, but it can also take a LOT more from you!

PSM can steal from you: the opportunity to nearly die in a chemical release.

PSM can steal from your family: the opportunity for tearful goodbyes.

PSM can steal from you: years of surgeries, painful rehabilitation, and diminished health.

 

Yeah, PSM is a thief. I’m plenty happy to have these experiences stolen from me and the people I work with.

Without Process Safety, people are taking risks without knowing they are taking them. NOBODY should have to do that.

If you want your Process Safety program to steal these experiences from your facility, your coworkers, your neighbors, and YOU, we can help!

Dealing with non-standard (non-routine) work in your Process Safety program

Occasionally we come across an issue we’ve customarily addressed, but never documented. Put another way: We realize we have a policy – even if an informal one – on how to deal with certain situations, but we’ve never turned that policy into a formal, written one.

It’s incredibly common to have these informal policies in smaller departments, or when a task is rare. You can usually identify them after-the-fact when you are told “That’s just the way we do things here. Everybody knows that.”

When we find these items in our Covered Processes, we should endeavor to document them. Today I’d like to talk about a big one: What do we do when the existing written procedures don’t match with the conditions or situations we are facing in our work. What written guidance are you providing to your Process Operators and Technicians on how to deal with this situation?

Every functioning Operations / Maintenance department has a policy – even if an informal, undocumented one – on how they deal with this issue.  

For years I’ve relied on the text in the SOP Written Plan concerning Temporary Operations:

The ammonia system is not operated in any temporary modes without a written SOP. If a component requires maintenance or replacement, that portion of the system is isolated and removed from service through a written SOP. Other Temporary Operations are handled through the MOC element which will ensure supervisory oversight. Temporary Operation SOPs are often via a written modification of an existing SOP in the form of an addendum.

This worked well, but it was a little bit obscure and (understandably) only thought to apply to SOPs themselves. That needed to change. What we’ve done to our system today, is formalized and documented guidance on how to deal with these non-standard / non-routine situations.

A new policy was placed in the RMP Management System Written Plan…

To ensure integration of this policy, the following text was added to the Operating Procedures (Implementation Policy: Using an SOP – Performing a Procedure, and Implementation Policy: Operating Phases, Temporary Operations) and Mechanical Integrity (Implementation Policy: Mechanical Integrity Procedures or MIPs) element Written Plans: “The Implementation Policy: Non-Standard Work. Addressing Conditions / Situations outside of existing Procedures found in the RMP Written Plan should be used when site/equipment/system Conditions or Situations are found to be different than those anticipated in the exiting written procedures.”

Are you handling non-standard / non-routine work well in your Process Safety program? If you are, and have a better idea, we’re always open to improvements. If you aren’t handling it well, perhaps you can implement the example above? 


For Inside-Baseball type people: This chart was inspired by the API RECOMMENDED PRACTICE 2201 Safe Hot Tapping Practices in the Petroleum and Petrochemical Industries, Chapter 4, Section 4.3.1, Figure 3—Example Decision Process for Authorizing Hot Tapping. Other than genericizing that flowchart to cover all types of work, I also made two large changes:

  • Routed the post “change conditions” step back to the start so we re-evaluate the existing procedure considering changed conditions/situations rather than short-circuiting back to the Management step.
  • Rewrote the flow/wording so that Condition Changes are preferred over mere procedural changes. The thinking was that we should prefer more engineering-type changes over administrative ones, where possible.

 

RAGAGEP Deficiencies and building a defensible case for an alternative solution

This issue: During a PHA, the facility is using an IIAR 2-2014a checklist and finds that the installation does not meet the requirements of section 6.14.3.3.

6.14.3.3 *Machinery room exhaust shall be to the outdoors not less than 20 ft (6 m) from a property line or openings into buildings.

The distance from the machinery room emergency exhaust outlets on the roof to a rooftop door leading into the building is approximately 8 feet. This is a 1910.119(j)(5) deficiency and a 1910.119(d)(3)(iii) RAGAGEP violation. They have a recommendation to address the issue.

Let’s think about the implications of this issue.

 

The Analysis: If there was an ammonia leak in the machinery room that activated the emergency ventilation, then the fans would exhaust on the roof very close to this door. In PHA terms, this could be thought of as a “siting” issue.

This situation is pretty rare: only technicians are allowed on the roof, and they are only up there for routine inspections and maintenance. Still, there are two ways the technician could be exposed to this hazard. If they used the door to:

  1. Access the building’s internal stairway from the roof.
  2. Access the roof from the building’s internal stairway.

For situation #1, a release would be easily observed / heard while on the roof in the area of the ventilation fans. There are also other entrances back into the building, including external stairs to the ground level. The team decided this situation was acceptable without any changes.

For situation #2, it would be possible (although not likely due to the noise of the fans) that someone could use the door to access the roof without knowing that they could be exposed to a release on the other side of the door. The team decided this was an unlikely, but possible issue. That is – it’s an unlikely turn of events that a release in the machinery room would occur at the same time as someone would be using the door – but it was possible so it should be addressed.

Obviously, the cleanest solution would be to move either the door or the fans, but that’s not an easy thing to do! Also, it would be a very expensive fix for an issue with such a low probability of occurrence.

The team brainstormed a bit and came up with an alternative plan to address the issue.

 

The chosen Solution: First, there are only two ways the fans could be exhausting a large amount of NH3 vapor. Either they would me manually operated due to maintenance / leaks or they would be automatically operated due to the IIAR 2-2014a 6.14.7.2.1 required NH3 detection interlock. Either way, a RUN signal is sent to the fan controls and the team decided to install a visual alarm on both sides of the door and use this RUN signal to activate it. Coupled with proper signage and training, the team believes the alarm would provide adequate warning to anyone approaching the door that the emergency ventilation system was running and that the door should not be used.

The team believes this is a defensible solution to non-compliance with IIAR 2-2014a 6.14.3.3. I tend to agree with them – it’s defensible if imperfect.

Perhaps another, actually compliant solution, would be to install ductwork on top of the emergency exhaust fans to raise the exhaust point so the distance from them to the door would meet the 20-foot requirement. Of course, such a change would require a new ventilation calculation to ensure the additional restriction caused by the duct work didn’t pose a problem. This ducting solution would likely be a bit expensive and that could mean that it would take some time to implement. If this duct solution was chosen,  the earlier “alarm” idea would be an excellent interim measure until approval and construction of the ducting project occured.

Note: This 20’ requirement appears to show up first in IIAR 2-2008a effective August 2010. Previously the requirement was a vaguer “13.2.3.11 The discharge of air shall be to the atmosphere in such a manner as to not cause inconvenience or danger.”

« Older posts Newer posts »